(DRAFT FOR PUBLIC CONSULTATION)

SECURING
AGENTIC Al

An Addendum to the
Guidelines and
Companion Guide on
Securing Al Systems

CSH

SINGAPO

2025

(2}
>
L
=
(2
>
()
<
O]
=
o
o)
@]
L
n
Z
@)
b
2
o
z
L
o
(@)
<
z
<
<
Q
-
Z
L
o
<
O]
=
oc
2
©]
L
(0}

This document is an addendum to CSA’s Companion Guide on Securing Al Systems
(“Addendum?), focusing on agentic Al systems. Systems owners should use this document
in conjunction with the Companion Guide on Securing Al Systems as a resource.

This document is meant as a community-driven resource, developed in collaboration with
the Al and cybersecurity practitioner communities. It provides practical mitigation measures
and practices to secure Al systems. This document is intended for informational purposes
only and is not mandatory, prescriptive nor exhaustive.

DEVELOPED IN CONSULTATION WITH

This document is published by the CSA, in collaboration with partners across the Al and
Cyber communities, including:

Accenture

Alibaba Cloud

Amaris Al

Cisco

Deloitte Singapore

DSO National Laboratories

Fujitsu Limited

Google Asia Pacific Pte. Ltd.

Government Technology Agency (GovTech)

HP Inc.

Kaspersky Lab Singapore Pte Ltd

Microsoft Singapore

Palo Alto Networks

PricewaterhouseCoopers Risk Services Pte Ltd
Resaro

The American Chamber of Commerce in Singapore (AmChamSG)
Vulcan (vulcanlab.ai)

DISCLAIMER

The information provided in this document does not, and is not intended to, constitute legal
advice. All information is for general informational purposes only. These organisations
provided views and suggestions on the security controls, descriptions of the security
control(s), and technical implementations included in this Addendum. CSA and its partners
shall not be liable for any inaccuracies, errors and/or omissions contained herein nor for any
losses or damages of any kind (including any loss of profits, business, goodwill, or reputation,
and/or any special, incidental, or consequential damages) in connection with any use of this
Addendum. Organisations are advised to consider how to apply the controls within to their
specific circumstances, in addition to other measures relevant to their needs. This
document contains links to other third-party websites. Such links are informational and do
not represent endorsement of content from these third-party sites.

(2}
>
L
=
(2
>
()
<
O]
=
o
o)
@]
L
n
Z
@)
b
2
o
z
L
o
(@)
<
z
<
<
Q
-
Z
L
o
<
O]
=
oc
2
©]
L
(0}

VERSION HISTORY

VERSION DATE REMARKS
RELEASED
0.1 22 Oct 2025 Release of Addendum on Securing Agentic Al for Public

Consultation

%)
>
L
'—
%)
>
n
<
O
Z
=
)
O
L
7]
zZ
o
b
2
[a]
zZ
L
[a)
(]
<
P4
<<
<
)
'—
Z
w
O]
<
O]
Z
x
)
O
L
n

(2}
>
L
=
(2}
>
()
<
O]
=
o
o)
@]
L
(7]
Z
@)
b
2
o
z
L
o
(@)
<
z
<
<
Q
-
Z
L
o
<
O]
=
oc
2
©]
L
(0}

EXECUTIVE SUMMARY

Agentic artificial intelligence (Al) systems are self-managing Al systems that can plan,
execute, critique, and iterate across multiple steps to achieve specified objectives. These
systems represent a significant evolution from traditional Al systems, moving beyond simple
pattern recognition and predetermined responses to demonstrate increasingly
sophisticated abilities to understand context, formulate plans, and take independent
actions to achieve specified objectives. Development of these systems bring new
capabilities and opportunities for organisations and users.

Organisations must carefully consider both the transformative potential and inherent risks
these agentic Al systems present. Their capacity to operate with reduced human oversight
introduces novel security considerations around system boundaries, control mechanisms,
and the potential for unexpected emergent behaviours. Understanding and addressing these
security implications is crucial as agentic Al becomes more prevalent in our digital
infrastructure and business operations.

The Cyber Security Agency of Singapore (CSA) has developed this addendum to advise
system owners on securing their agentic Al systems. This addendum is meant to be read
together with the Guidelines and Companion Guide on Securing Al Systems, which outline
foundational Al security principles.

As an addendum to the Guidelines, this document takes a risk-based approach across the
Al development lifecycle, while introducing new considerations that are relevant to agentic
Al. These considerations include mapping out agentic workflows to identify potential threat
vectors to the system.

To complement the Companion Guide, this addendum lists agentic Al-related risks and
mitigations across the development lifecycle, categorised by capabilities of agentic Al
systems. In addition, examples based on current industry use cases are provided as a
practical resource on how to apply the addendum.

This document is intended for informational purposes only and is not mandatory,
prescriptive nor exhaustive. The content of this document should not be construed as
comprehensive guidance or definitive recommendations.

(2}
>
L
=
(2}
>
()
<
O]
=
o
o)
@]
L
n
Z
@)
b
2
o
z
L
o
(@)
<
z
<
<
Q
-
Z
L
o
<
O]
=
oc
2
©]
L
(0}

TABLE OF CONTENTS

QUICKREFERENGCE TABLEottt ettt et e et e et s e e eenaees 7
1. INTRODUGCTION ..ttt ettt ettt e e et e e et e s e e ttae s e eteaae s e eeten s eetenae s eeeennenaees 9
2. HOW AGENTIC AIWORKS ...ttt ettt e et e et e et s e e teae e e eeeaaeeeeeens 11
2.1. BASELINE COMPONENTS ...ttt ettt ettt e et e et s e erenne e 13
2.2. BASELINE SYSTEMDESIGN. ...ttt ettt eetene e erenne e 14
2.2.1. Agentic Al System arChit@CtUIEc..ivniiniiiiiii e e e 14
2.2.2. RoleS & ACCESS CONTIOL ueieuniiiiiiiiiiiiiii ettt et e e s eea e 15
2.2.3. System workflows & aUtONOMYcceuiiiiiiiiiiiiiiiiii e e e eens 16

2.3, CAPABILITIES ...ttt ettt et e e s e e tene e e e teane s eetanae e eenennanaeee 21
SECURITY THREATS TO AGENTIC Al SYSTEMS ...ttt 24

4. SECURING AGENTIC Al ..ottt eeet et e e ettt e e s e e e e e eeennnas 26
4.1. TAKE A LIFECYCLE APPROACH, AND START WITH A RISK ASSESSMENT 26
4.2. |IDENTIFY THE RELEVANT MEASURES & CONTROLS.......oiiiiiierieiiieneereeie e, 30
4.3. TREATMENT MEASURES / CONTROLS FOR AGENTIC Al SYSTEMScccuueneeeee. 31

1. PLANNING AND DESIGN ... ittt ettt ettt e et e e e et s eeeene s eeeenaans 31

2. DEVELOPMENT ... ittt ettt e e ee ettt s e e e e ettt s s e e eeereensnnaee s e eeeeneennnas 32

3. DEPLOYMENT ...ttt ettt e e ettt e e e e e et teteae e s e e eeeteennnnaee s e eeeeeeennnas 40

4. OPERATIONS AND MAINTENANCGE ...ttt 43

5. USE CASE EXAMPLE ittt ettt e et s e et s e e tene e e e eenneseeeens 49
5.1. Case Study 1: Web application development system (SaaS implementation)... 49
5.2. Case Study 2: Client Onboarding System (In-house development)................... 65
5.8. Case Study 3: Automated Fraud Detection Systemccccevueiiiiiiiiiiiiiiiniinenennns 72
ANNEX A Threats to AGENTtiC Al SYSTEMS ..cuuiiiiiiiiiiiiiii e ee e et eaeereeesansaneanaans 77
ANNEX B Model Context ProtOCOL.......ciiuuiiiiiiiiiiiiiiiiiiicieti ettt 81
ANNEX C Agent 2 AENt ProtOCOL .. cuu ettt ettt et e e eneeneeensensansennans 84
REFERENGES ...ttt ettt ettt e e et s e et s e et s s erenae s s enenneneees 87

(2}
>
L
=
(2}
>
()
<
O]
=
o
o)
@]
L
n
Z
@)
b
2
o
z
L
o
(@)
<
z
<
<
Q
-
Z
L
o
<
O]
=
oc
2
©]
L
(0}

QUICK REFERENCE TABLE

Stakeholders in specific roles may use the following table to quickly reference relevant
controls in Section 4.2 — IDENTIFY THE RELEVANT MEASURES & CONTROLS.

The roles defined below are included to guide understanding of this document and are not
intended to be authoritative.

Decision Makers:

Responsible for overseeing the strategic and operational aspects of Al implementation for
the Al system. They are responsible for setting the vision and goals for Al initiatives, defining
product requirements, allocating resources, ensuring compliance, and evaluating risks and
benefits.

Roles Included: Product Manager, Project Manager

Al Practitioners:

Responsible for the practical application (i.e. designing, developing, and implementing Al
solutions, including Al agents) across the life cycle. This includes collecting, procuring or
analysing data that goes into systems, building the Al system architecture and infrastructure,
building and optimising the Al system to deliver the required functions, as well as conducting
rigorous testing and validation of Al models and agents to ensure their accuracy, reliability,
and performance. In cases where the Al system utilises a third-party Al system, Al
Practitioners also include the third-party providers responsible for these activities, such as
those contracted through a Service Level Agreement (SLA). Al practitioners would be in
charge of implementing the required controls across the entire system.

Roles Included: AI/ML Developer, AI/ML Engineer, Data Scientist

Cybersecurity Practitioners:

Responsible for ensuring the security and integrity of Al systems. This includes implementing
security measures to protect Al systems in collaboration with Al Practitioners, monitoring for
potential threats, ensuring compliance with cybersecurity regulations.

Roles Included: IT Security Practitioner, Cybersecurity Expert

(2}
>
L
-
(2}
>
()
<
O]
=
o
o)
@]
L
n
Z
o
b
2
o
z
L
o
(@)
<
P4
<
<
Q
-
Z
L
O]
<
O]
=
oc
2
O
L
(0}

Table 1: User Quick Reference Table

The following measures/
controls may be relevant to
Decision Makers:

The following measures/
controls may be relevant to
Al Practitioners:

The following measures/
controls may be relevant to
Cybersecurity Practitioners:

1.1 Conduct a risk assessment

1.1 Conduct a risk assessment

1.1 Conduct a risk assessment

2.1 Supply chain security

2.7 Limit agency
2.10 Self-reflection

2.11 Hallucination

2.1 Supply chain security

2.2 Model hardening

2.3 System hardening

2.4 ldentify, track and protect

2.1 Supply chain security

2.3 System hardening

2.4 Identify, track and protect

assets

assets

2.5 Regular backups

2.6 Authorisation and
authentication

2.7 Limit agency

2.8 Secure by default

2.9 Environment segmentation
2.10 Self-reflection

2.11 Hallucination

2.5 Regular backups

2.6 Authorisation and
authentication

2.7 Limit agency

2.8 Secure by default

2.9 Environment segmentation

3.2 Security testing

3.1 Availability controls
3.2 Security testing

3.3 Secure MCP

3.4 Secure inter-agent

communication

3.1 Availability controls
3.2 Security testing
3.3 Secure MCP

3.4 Secure inter-agent

communication

4.3 Continuous monitoring

and logging
4.4 Human-in-the-loop

4.5 Vulnerability disclosure

4.1 Validate inputs

4.2 Validate outputs

4.3 Continuous monitoring
and logging

4.4 Human-in-the-loop

4.5 Vulnerability disclosure

4.1 Validate inputs
4.2 Validate outputs
4.3 Continuous monitoring

and logging
4.5 Vulnerability disclosure

(2}
>
L
=
(2}
>
()
<
O]
=
o
o)
@]
L
(7]
Z
@)
b
2
o
z
L
o
(@)
<
z
<
<
Q
-
Z
L
o
<
O]
=
oc
2
©]
L
(0}

1. INTRODUCTION

Agentic artificial intelligence (Al) systems are self-managing Al systems that can plan,
execute, critique, and iterate across multiple steps to achieve specified objectives. The
emergence of these systems reflects ongoing developments in Al that brings new
capabilities and opportunities for organisations and users. These systems are capable of
autonomous, goal-driven decision making and execution, which will reshape how we
interact with Al.

Agentic Al systems represent a significant evolution from traditional Al systems, moving
beyond simple pattern recognition and predetermined responses to demonstrate
increasingly sophisticated abilities to understand context, formulate plans, and take
independent actions to achieve specified objectives. To achieve these objectives, agentic Al
systems make use of Al agents—modular systems driven by Large Language Models (LLMs)
and Large Image Models (LIMs) for narrow, task-specific automation®. Multiple Al agents may
be used together and orchestrated by an autonomous agentic Al system.

As organisations begin to deploy agentic Al systems (and Al agents) across various
domains—from process automation and customer service to complex decision support and
resource optimisation—we must carefully consider both the transformative potential and
inherent risks these systems present. Their capacity to operate with reduced human
oversight, while potentially increasing efficiency and scalability, also introduces novel
security considerations around system boundaries, control mechanisms, and the potential
for unexpected emergent behaviours. Understanding and addressing these security
implications is crucial as agentic Al becomes more prevalent in our digital infrastructure and
business operations.

The Cyber Security Agency of Singapore (CSA) has worked closely with Al and cybersecurity
practitioners to develop this addendum to advise system owners on securing their agentic Al
systems. This addendum is meant to be read together with the Guidelines and Companion
Guide on Securing Al Systems, which outline foundational Al security principles.

This document is intended for informational purposes only and is not mandatory,
prescriptive nor exhaustive. The content of this document should not be construed as
comprehensive guidance or definitive recommendations.

1 Sapkota, R., Roumeliotis, K. |., & Karkee, M. Al Agents vs. Agentic Al: A Conceptual Taxonomy,
Applications and Challenges.

(2}
>
L
=
(2}
>
()
<
O]
=
o
o)
@]
L
n
Z
@)
b
2
o
z
L
o
(@)
<
z
<
<
Q
-
Z
L
o
<
O]
=
oc
2
©]
L
(0}

PURPOSE AND SCOPE

Purpose

This addendum curates practical measures and controls that system owners can use to
secure their adoption of agentic Al systems. These measures and controls are voluntary, and
not all the measures and controls listed in this addendum will be applicable to all
organisations or environments. Organisations may also be at different stages of Al
development (e.g. POC, pilot, beta release). Organisations should consider relevance to
their use cases as well.

This addendum is meant to be read with the Guidelines and Companion Guide on Securing
Al Systems?. As this Addendum is focused on the key elements of agentic Al systems, the

relevant treatment measures/controls from the Companion Guide may still apply to
underlying systems and related processes, even if not covered in this document.

Scope

The measures and controls within the addendum address the cybersecurity threats and risks
relevant to agentic Al systems. It does not specifically address Al safety, or other common
attendant considerations for Al such as fairness, transparency or inclusion, although it is
noted that some of the recommended cybersecurity controls may address Al safety risks as
well. It also does not cover the misuse of Al for cyberattacks (Al-enabled malware), and
scams (deepfakes).

2 Cyber Security Agency of Singapore. Guidelines and Companion Guide on Securing Al Systems

https://www.csa.gov.sg/resources/publications/guidelines-and-companion-guide-on-securing-ai-systems
https://www.csa.gov.sg/resources/publications/guidelines-and-companion-guide-on-securing-ai-systems
https://www.csa.gov.sg/resources/publications/guidelines-and-companion-guide-on-securing-ai-systems

(2}
>
L
=
(2}
>
()
<
O]
=
o
o)
@]
L
n
Z
@)
b
2
o
z
L
o
(@)
<
z
<
<
Q
-
Z
L
o
<
O]
=
oc
2
©]
L
(0}

2. HOW AGENTIC Al WORKS

Agentic Al systems interact with their environment, collect data and perform self-determined
tasks to meet specified goals.

We can describe the agentic Al system through the following, which helps system owners to
understand how agentic Al systems operate and what considerations are needed for safe
and effective deployment:

o Key components that facilitate its operation,
e System design, including its architecture; and
e Capabilities (cognitive, interactive, operational)

These elements help system owners to understand how agentic Al systems operate and what
considerations are needed for safe and effective deployment.

(2}
>
L
=
(2}
>
()
<
O]
=
o
o)
@]
L
n
Z
@)
b
2
o
z
L
o
(@)
<
z
<
<
Q
-
Z
L
o
<
O]
=
oc
2
©]
L
(0}

Figure 1: Baseline and Capability Taxonomy, Al Risk and Capability Framework?

Baseline

Components

— Tools

— Instructions

— Memory

— Protocols

System Design

Agentic
Architecture

Roles & Access
Control

System
Workflows &
Autonomy

Capabilities

Cognitive

| Reasoning &
Problem-solving

| Planning & Goal
Management

Tool Use &
Delegation

Interaction

| Natural Language
Communication

| Multimodal
Communication

Programmatic
Interfaces

Official
Communication

— Transactions

| Internet & Search
Access

— Computer Use

3 GovTech Singapore (Al Practice). Agentic Risk & Capability Framework.

Operational

— Code Execution

File & Data
Management

System
Management

Agentic
Communication

https://govtech-responsibleai.github.io/agentic-risk-capability-framework/

2.1. BASELINE COMPONENTS

Large Language Models (LLMs) alone are constrained in their operations. While they can be
sophisticated in terms of processing input and content generation, by themselves they
cannot directly take actions beyond providing information. Agentic Al systems transform this
paradigm fundamentally by connecting LLMs to functional tools and systems. This enables
them to execute tasks such as sending emails, reading and writing to files and databases,
interacting with other software systems, or orchestrating multi-step processes.

This expansion from content generation to actual action relies on the integration of multiple
components.

Table 2: Key Components in Agentic Al Systems

Component Description

An Al model that serves as the central reasoning and planning
engine, or the “brain” of the agent. It processes instructions,
Large Language Model (LLM) | "8 , 8 P ,

interprets user inputs, and generates contextually appropriate

responses.

Extends the capabilities of LLMs to execute actions such as
writing to files and databases, controlling devices, or performing
Tools transactions. Tools can also allow Al agents to perceive the
environment through sensors or accessing APIs to obtain
information (e.g. flight details, weather). Tools can be called

based on the LLM's reasoning and user needs.

Command(s) that defines an agent's role, capabilities, and
. behavioural constraints e.g. a system prompt for an LLM.
Instructions
Instructions may be implemented by model providers if calling

an external LLM, and/or added by users and developers.

Information that is stored and accessible to the LLM. These can
Memory be in temporarily contained in the short-term memory or more
persistent within the long-term memory.

Protocols allow for a simplified, consistent, and standardised
Protocols

way for agents to communicate with tools and other agents.

Typically, the process of transforming a user’s inputs into execution of a task involves:

1. Receiving inputs. The Al agent receives a specific instruction or goal from the user.

2. Layering on perception. The Al agent collects sensory input from sources, such as
cameras or microphones, or screen captures and processing technology. This helps
it to detect contextual cues and perceive its environment.

3. Reasoning and planning. The LLM helps to break down the goal into smaller
actionable tasks.

4. Orchestration and action execution. Perform tasks based on specific orders or
conditions. This may include interactions with other agents, and/or connected
systems and tools.

5. Render aresponse. Updates the user on the outcome in an appropriate format.

(2}
>
L
=
(2}
>
()
<
O]
=
o
o)
@]
L
(7]
Z
@)
b
2
o
z
L
o
(@)
<
z
<
<
Q
-
Z
L
o
<
O]
=
oc
2
©]
L
(0}

(2}
>
L
=
(2}
>
()
<
O]
=
o
o)
@]
L
n
Z
@)
b
2
o
z
L
o
(@)
<
z
<
<
Q
-
Z
L
o
<
O]
=
oc
2
©]
L
(0}

2.2. BASELINE SYSTEM DESIGN

2.2.1. Agentic Al system architecture

The agentic Al system architecture defines how agents are connected, coordinated and
orchestrated to solve tasks.

A single-agent system is an Al system with one agent that handles all tasks independently. A
multi-agent architecture comprises multiple agents, collaborating to scale or combine
specialist roles and functionalities. The co-operation across multiple agents enables solving
problems that go beyond the capabilities of would be infeasible for a single agent alone.

Different architectures result in varying levels of system-wide risk, which should be
considered carefully.

Figure 2: Examples of single- vs. multi-agent system architecture

Example of single-agent system architecture

iny iut output

4 ™
tools \ Agent y. LLM
Y
h 4
—
Memory

Example of multi-agent system architecture*

A B

*For pictorial clarity, the LLMs are placed within each agent to avoid clutter. LLMs may still be called externally if
needed (e.g. through APIs).

(2}
>
L
=
(2}
>
()
<
O]
=
o
o)
@]
L
n
Z
@)
b
2
o
z
L
o
(@)
<
z
<
<
Q
-
Z
L
o
<
O]
=
oc
2
©]
L
(0}

Table 3: Key differences between single agent and multi-agent systems

Single-agent Multi-agent
Complexity and Simple and centralised | More complex, distributed
architecture architecture architecture

Decision-making Centralised decision-making by | Distributed decision-making amongst
capabilities one agent multiple agents, and hence should be
able to address more complex tasks as
tasks can be delegated to different
specialised agents

Task complexity Handles one task at a time Can manage multiple tasks
simultaneously
Adaptability May struggle with dynamic | More likely to adjust and respond in
environments real-time to changes in environment
Communication Operates in isolation; no inter- | Agents interact and share information,
agent communication needed hence requiring communication
through protocols (e.g. A2A, ACP)
Fault tolerance Simple system with limited | Easier to build redundancy, but
redundancy — could have a single | complex system could have correlated
point of failure. failures®.

In both single- and multi-agentic architectures, agents communicate with tools and services.
In multi-agent architectures, communication also takes place among agents. Traditionally,
such integration with tools and services may require separate and on-off integrations. With
the rise of agentic Al, we observe the release of protocols (e.g. Anthropic’s Model Context
Protocol (MCP), Google’s Agent2Agent (A2A)). that allow for a simplified, consistent, and
standardised way for agents to communicate. These reduce the effort required to onboard
new tools, services and agents.

2.2.2. Roles & access control

Roles and access controls establish the responsibilities and permissions across agents in
the system. This helps to limit the impact of incidents such as unauthorised actions or
access, or potential system failures. Agent roles can include:

- Orchestrator agents that manage workflows
- Specialist agents that perform pre-defined functions
- Interface agents that handle external communications.

Roles and access controls for agentic Al systems should be clearly defined to avoid
unauthorised access or excessive privilege.

4 Correlated failures are when multiple components fail due to a single shared cause.

(2}
>
L
=
(2}
>
()
<
O]
=
o
o)
@]
L
n
Z
@)
b
2
o
z
L
o
(@)
<
z
<
<
Q
-
Z
L
o
<
O]
=
oc
2
©]
L
(0}

2.2.3. System workflows & autonomy

An Al agentic workflow describes the step-by-step process whereby Al agents use reasoning,
planning and tools to perform tasks. Such workflows can also be seen in terms of data
movement within agentic Al systems, which becomes increasingly challenging to track with
more complex architectures and integration to more tools and capabilities. These workflows
range from straightforward linear progressions (see Figure 3) to more intricate branching
and/or hierarchical patterns (see Figure 4).

- In a linear workflow, data moves sequentially through predetermined steps i.e. each

action follows directly from the previous one.

- Branching workflows are implemented when the agentic Al system needs to make
decisions about using multiple tools or services simultaneously, based on the task goal
or contextual information. These branching workflows hence create multiple possible
paths for data movement.

Figure 3: Example of a linear workflow

% @ oot

service / tool Al model

Figure 4: Example branching workflow

/ /)
service / tool Al model service / ool
: N
input
\ oufput .
Al model g

3
XHEH
3/ -

service / ool

Understanding the workflow, as well as data movement, informs risk assessment and threat
modelling. This allows system owners to identify critical points where data might be
vulnerable, and prioritise safeguards. These topics are explored in greater detail in Chapter
3.

The workflow within an agentic Al system is also affected by its autonomy, which refers to its
ability to operate, make decisions and execute tasks with minimal or no human intervention.
As autonomy of the system increases, it also becomes increasingly challenging to assess or

predict the potential data flows. This underscores the importance of determining the
appropriate autonomy level of the agentic Al system.

Organisations such as NVIDIA have developed frameworks to classify the autonomy levels

(2}
>
L
=
(2}
>
()
<
O]
=
o
o)
@]
L
n
Z
@)
b
2
o
z
L
o
(@)
<
z
<
<
Q
-
Z
L
o
<
O]
=
oc
2
©]
L
(0}

of agentic Al systems?®.

Table 4: NVIDIA’s autonomy classification framework

Autonomy Level

Description

Example

0 - Inference API

A single user request
results in a single inference
call to a single model.

An image classification service that
takes a photo and returns a label
exemplifies this simplicity. The data
path is direct: input — model —
output, with no additional
processing or decisions.

1 - Deterministic
System

A single user request
triggers more than one
inference request, possibly
to more than one model, in
a predetermined order that
does not depend on either

In drug discovery, a system might
process molecular structures
through predetermined stages:
initial screening — toxicity analysis
— binding prediction. Each step's
output feeds into the nextin a known

user input or inference | sequence.
results.
2 - Weakly A single user request | An enterprise document processing
autonomous triggers more than one | system might analyse content type,
system inference request. An Al | then route documents through
model can determine if or | different specialized models:
how to call plugins or | financial documents to compliance
perform additional | checkers, technical documents to
inference at predetermined | subject matter validators, and
decision points. customer communications to
sentiment analysers. While
complex, all possible paths can be
mapped.
3 —Fully A single user request | A security vulnerability analyser
autonomous triggers more than one | might start with code review,
system inference request. In | dynamically decide to examine
response to a user request, | deployment configurations,

the Al model can freely
decide if, when, or how to
call plugins or other Al
models, or to revise its own
plan freely, including
deciding when to return
control to the user.

investigate dependency chains, and
recursively explore potential attack
vectors, continuously adjusting its
investigation based on findings. The
number of possible execution paths
grows exponentially.

5 Harang, R., & Sablotny, M. Agentic Autonomy Levels and Security. NVIDIA.

https://developer.nvidia.com/blog/agentic-autonomy-levels-and-security/

(2}
>
L
=
(2}
>
()
<
O]
=
o
o)
@]
L
n
Z
@)
b
2
o
z
L
o
(@)
<
z
<
<
Q
-
Z
L
o
<
O]
=
oc
2
©]
L
(0}

For Level 0 systems, mapping of workflows may not be necessary as inference calls are
made directly to a model, which produces an output. There are no additional services or
tools are invoked.

For Level 1 systems and above, mapping of workflows is highly recommended.

- Level 1 systems usually present as a linear chain of calls in which the output from one
Al call or tool response is passed on to the next step in a deterministic manner. The
complete workflow is known beforehand.

Figure 5: Autonomy Level 1 — Deterministic system, linear workflow

vad

service / tool

Al model Al model

- Level 2 systems have outputs that can be sent along various paths though the workflow,
based on task requirements and the orchestrator agent’s decision. Every execution path
can be determined, but the actual path can only be identified when the workflow is
executed.

Figure 6: Autonomy Level 2 - Weakly autonomous system, branching paths at predetermined points

KHE X

service / tool service / tool

2
XH@)

.

service / tool

input

output

LN
s

Al model

(2}
>
L
=
(2}
>
()
<
O]
=
o
o)
@]
L
n
Z
@)
b
2
o
z
L
o
(@)
<
z
<
<
Q
-
Z
L
o
<
O]
=
oc
2
©]
L
(0}

- Level 3 systems have significantly more potential execution paths, as more models and

tools are invoked. This complexity can be seen in the cyclical path, which indicates a
potentially unbounded number of execution paths. It is generally not possible to
enumerate all the paths in advance or specific paths which will be used.

Figure 7: Autonomy Level 3 - Fully autonomous system, flows branch to different paths and can be
cyclical

input

% ot

Al model service / tool

Sy

service / tool

'

Al model

'

|-

service / tool

Agent Design Patterns

Agent design patterns define how an agentic Al system’s components are organised,
integrated, and orchestrated to accomplish a task. Unlike system workflows that only
describe the sequence of steps an agent takes, agent design patterns provide reusable
architectural templates that determine the fundamental structure and interaction model
for an agentic Al system. These templates systematically provide different approaches to
organise agents based on specific workload characteristics and requirements. This helps
with scalability, and is more easy to maintain implementations (similar to how software
design patterns like Model-View-Controller provide standardised approaches to building
applications, though agent patterns are still being refined as the field matures).

Examples of these agent design patterns include:
Agent design pattern | Description

Sequential Specialised agents execute in a predefined, linear order with
each agent's output serving as direct input for the next agent,
using predefined workflow logic and no Al model orchestration.

(2}
>
L
=
(2}
>
()
<
O]
=
o
o)
@]
L
n
Z
@)
b
2
o
z
L
o
(@)
<
z
<
<
Q
-
Z
L
o
<
O]
=
oc
2
©]
L
(0}

Parallel Multiple specialised sub-agents perform tasks independently
and simultaneously, with outputs then synthesised to produce
a final consolidated response, using predefined workflow logic
and no Al model orchestration.

Loop Repeatedly executes a sequence of specialised subagents
until a specific termination condition is met, using predefined
logic and no Al model orchestration.

Reason and act | Uses iterative loops of thought (reasoning about next steps),
(ReAct) action (tool selection or final answer), and observation (saving
tool outputs) for dynamic planning and continuous adaptation.

Coordinator Uses a central coordinator agent, with Al model orchestration,
to analyse requests, decompose into sub-tasks, and
dynamically route these to specialised agents.

Swarm Uses collaborative all-to-all communication, where a
dispatcher routes requests to specialised agents that can
communicate with each other and hand off tasks. Lacks

central orchestration and requires explicit exit conditions.

System owners should choose an agent design pattern based on the nature of tasks
involved (e.g., whether they are predictable and sequential, or complex problems requiring
autonomous decision-making with outputs achieved through iterative refinement cycles).
Each pattern involves trade-offs: simpler patterns like sequential offer lower complexity
and cost but limited flexibility, whilst advanced patterns like swarm provide exceptional
capability for complex problems but require significant computational resources and
sophisticated orchestration logic.

From a security perspective, agent design patterns can affect the likelihood and impact of
attacks such as prompt injection, where malicious instructions embedded in processed
content manipulate agents to perform rogue actions or sensitive data disclosure. Agentic
Al systems can build resilience through agent design patterns that enforce strict isolation
between untrusted data and agent control flow. This should be layered on with relevant
security controls (discussed in Chapter 4) for more comprehensive defence.

(2}
>
L
=
(2}
>
()
<
O]
=
o
o)
@]
L
n
Z
@)
b
2
o
z
L
o
(@)
<
z
<
<
Q
-
Z
L
o
<
O]
=
oc
2
©]
L
(0}

2.3. CAPABILITIES

Al systems differ in their capabilities, which can be seen as the general classes of actions
that an agentic Al system can perform.

There are three key categories of capabilities: cognitive, interaction, and operational®.
Each category present distinct functions and interactions with their environment. As each
type of capability presents its own value and risks, agentic Al systems with more capabilities
can also incur more risks that need to be addressed.

Cognitive capabilities

Cognitive capabilities mimic human thinking. For example:

- Reasoning and problem-solving. The capability to perform structured, multi-step
reasoning that demonstrates deeper understanding, problem-solving, and decision-
making.

- Planning & goal management. The capability to develop detailed, step-by-step, and
executable plans with specific tasks in response to broad instructions.

- Agent delegation. The capability to assign subtasks to other agents and coordinate
their activities to achieve broader goals.

- Tooluse. The capability to evaluate available options and choose the best tool for
specific subtasks.

8 GovTech Singapore (Al Practice). Agentic Risk & Capability Framework.

https://govtech-responsibleai.github.io/agentic-risk-capability-framework/

Interaction capabilities

Interaction capabilities describe how the agentic Al system exchanges information with
users, other agents, and external systems. These capabilities below are broadly
differentiated based on how and what they interact with:

- Natural language communication. The capability to fluently and meaningfully
converse with human users, handling a wide range of situations such as explaining
complex topics, generating documents or prose, or discussing issues with human
users.

- Multimodal understanding & generation. The capability to take in image, audio, or
video inputs and / or generate image, audio, or video outputs.

- Official communication. The capability to compose and directly publish
communications that formally represent an organisation to external parties (e.g.,
customers, partners, regulators, courts, media) via approved channels and formats
without human oversight or approval.

- Business transactions. The capability to execute transactions that involve
exchanging money, services, or commitments with external parties.

- Internet and search access. The capability to access and search the Internet for
services or resources, especially for up-to-date information to supplement its
knowledge and provide more accurate answers.

- Computer use. The capability to directly control a computer interface by moving the
mouse, clicking buttons, and typing on behalf of the user.

- Other programmatic interfaces. The capability to interact with external systems
through APIs, SDKs, or backend services.

Operational capabilities

Operational capabilities focus on the agentic Al system's ability to execute actions safely and
efficiently within its operating environment. This can include:

- Agent communication. The capability to communicate with other agents within the
system, either through natural language or a predefined protocol, and to coordinate
with other agents to accomplish complex tasks that require multiple specialties.

- Code execution. The capability to write, execute, and debug code in various
programming languages to automate tasks or solve computational problems.

- File & data management. The capability to create, read, modify, organise,
convert, query, and update information across both unstructured files (e.g.,
PDFs, Word docs, spreadsheets) and structured data stores (e.g., SQL/NoSQL
databases, data warehouses, vector stores).

- System management. The capability to adjust system configurations, manage
computing resources, and handle technical infrastructure tasks.

(2}
>
L
=
(2}
>
()
<
O]
=
o
o)
@]
L
(7]
Z
@)
b
2
o
z
L
o
(@)
<
z
<
<
Q
-
Z
L
o
<
O]
=
oc
2
©]
L
(0}

(2}
>
L
=
(2}
>
()
<
O]
=
o
o)
@]
L
n
Z
@)
b
2
o
z
L
o
(@)
<
z
<
<
Q
-
Z
L
o
<
O]
=
oc
2
©]
L
(0}

Figure 8: Baseline and Capability Taxonomy, Al Risk and Capability Framework

Baseline

Components

— LLM —

— Tools

— Instructions —

— Memory

— Protocols

System Design

Agentic
Architecture

Roles & Access
Control

System
Workflows &
Autonomy

Capabilities

Coghnitive

| Reasoning &
Problem-solving

| Planning & Goal
Management

Tool Use &
Delegation

Interaction

Natural
— Language
Communication

Multimodal
Communication

| Programmatic
Interfaces

| Official
Communication

— Transactions

| Internet &
Search Access

— Computer Use

Operational

— Code Execution

File & Data
Management

System
Management

| Agentic
Communication

(2}
>
L
=
(2}
>
()
<
O]
=
o
o)
@]
L
(7]
Z
@)
b
2
o
z
L
o
(@)
<
z
<
<
Q
-
Z
L
o
<
O]
=
oc
2
©]
L
(0}

3. SECURITY THREATSTO
AGENTIC Al SYSTEMS

Agentic Al systems face both traditional and novel security challenges. This can be seen as
a cumulation across different layers of risks.

- Classical cybersecurity risks. This is because agentic Al systems have underlying
software infrastructure and components, and can be vulnerable to threats such as
remote code execution and SQL injection (if connected to a structured database).

- Inherited risks from LLMs, including prompt injection, jailbreaking and data

leakage. Refer to CSA’s Guidelines and Companion Guide on Securing Al systems,
Section 2.2.2 - Development for a fuller articulation.
- New risks arising from agentic Al systems. The two primary security concerns in

agentic Al systems are rogue actions and sensitive data disclosure.

o

Rogue actions occur when agents perform unintended, or harmful tasks.
These can arise through prompt injection, where malicious instructions
hidden within normal-looking inputs manipulate the agent's behaviour. They
can also occur through simple misunderstandings, if the agent misinterprets
ambiguous instructions or handles complex interfaces incorrectly. The
impact of these rogue actions directly correlates with the agent's capabilities
—more powerful agents pose greater risks when they malfunction.

Sensitive data disclosure through agent manipulation. This occurs when
attackers exploit agents to reveal private information when agentic workflows
are executed. The agent can be guided through a series of seemingly
legitimate actions that ultimately leak protected information. Attackers can
also manipulate the agent to include sensitive data in its responses.

As with all digital capabilities, there is a balance between utility and risk. For agentic Al
systems, increasing the agent(s)’s autonomy, access and capabilities can enhance its

usefulness. However, this can simultaneously expand the attack surface of the agentic Al

system, as well as its potential for causing harm or other undesired actions if they

malfunction or are maliciously exploited.

There is a growing body of resources on the risks to agentic Al systems. This includes
OWASP’s threat taxonomy for agentic Al systems that highlights 15 threats’:

T1 -Memory Poisoning

T2 -Tool Misuse

T3 - Privilege Compromise

T4 - Resource Overload

T5 - Cascading Hallucination Attacks

T6 — Intent Breaking & Goal Manipulation
T7 — Misaligned & Deceptive Behaviours

T8 — Repudiation & Untraceability

T9 - Identity Spoofing & Impersonation

T10 - Overwhelming Human in the Loop
T11 - Unexpected RCE and Code Attacks
T12 — Agent Communication Poisoning

T13 - Rogue Agents in Multi-Agent Systems
T14 — Human Attacks on Multi-Agent Systems
T15 - Human Manipulation

Figure 9: Example of threats to agentic Al systems

T14,T15
(12] T11

input output

from user o user
Agent 2

(T4, 75,78, T12, T15 |

Instruction I

(3]
@ T4 TS| ~—

Short-term - @
memory <

\) [ra.17.78.79.T10)
F3
o)

3

Long-term
memory

For more details on the OWASP ASI threat taxonomy, refer to ANNEXA - Threats to Agentic Al

Database

Systems or https://genai.owasp.org/resource/agentic-ai-threats-and-mitigations/

7 OWASP. OWASP Top 10 for LLMs - Agentic Al - Threats and Mitigations.

(2}
>
L
=
(2}
>
()
<
O]
=
o
o)
@]
L
n
Z
@)
b
2
o
z
L
o
(@)
<
z
<
<
Q
-
Z
L
o
<
O]
=
oc
2
©]
L
(0}

https://genai.owasp.org/resource/agentic-ai-threats-and-mitigations/
https://genai.owasp.org/resource/agentic-ai-threats-and-mitigations/

(2}
>
L
=
(2}
>
()
<
o
=
o
=)
O
L
(72]
P4
O
=
2
a
P4
11)
=)
a
<
P
<
<
Q
-
Z
L
o
<
o
Z
oc
2
O
L
(0}

4. SECURING AGENTIC Al

4.1. TAKE A LIFECYCLE APPROACH, AND
START WITH A RISK ASSESSMENT

CSA’s Guidelines and Companion Guide to Securing Al Systems lay out the two key
principles to securing Al systems, including taking a lifecycle approach and starting with a
risk assessment. This continues to be relevant for agentic Al systems. The approach to
securing Al systems is included here for easy reference. Given the dynamic nature of agentic
Al systems, we recommend additional considerations in Steps 1 and 3 to support the risk
assessment.

STEP 1-Conduct arisk assessment, focusing on
security risks to agentic Al systems

Conduct a risk assessment, either based on best practices or your organisation’s existing
Enterprise Risk Assessment/Management Framework. Risk assessment can be done with
reference to CSA’s published guides?, if applicable:

- Guide to Cyber Threat Modelling
- Guide to Conducting Cybersecurity Risk Assessment for Critical Information
Infrastructure

Focus on the security risks related to Al systems. For agentic Al systems, we also
recommend:

- Assessing the autonomy level of the system. This will assess how independently
the system operates, how it makes decisions, and how complex its workflows might
become. A Level 0 system making straightforward inference calls presents vastly
different security challenges compared to a Level 3 system that can dynamically
modify its own execution paths.

- Perform threat modelling to identify areas of interest. Threat modelling identifies
where security risks might occur in the system’s workflows. This can be
complemented with taint tracing, which is a methodology to track how untrusted
data moves through the system. For instance, in a customer service Al system, we
can map how user inputs might flow through various decision points and tools, to
identify and implement appropriate controls at critical junctures.

8 Cyber Security Agency of Singapore. Supplementary references

https://www.csa.gov.sg/legislation/supplementary-references

- ldentify the risks associated with the agent(s)’s capabilities. Each capability
results in different consequences, and hence different associated risks. Taking a
capability-centric approach helps to: (i) be precise about the impact of an agent’s
operation and potential failure; (ii) identify the different actions involved in realizing
the capability, and in turn identify the potential risks. Given that agentic Al system
capabilities continue to grow, a capability-centric framework helps to provide a
scalable foundation for managing diverse systems.

Taint tracing — tracking data flows from untrusted sources through agentic workflows —
enables security teams to identify when systems have been compromised and which
actions require additional scrutiny or manual approval®.

Figure 10: Enumerating taints in Level 3 systems (tainted flows marked in red)

input @ % output input @ % output
» ~ » > » S w——
l Al model service / ool \ Al model service / fool
7 1
"SR -
service / tool service / tool
Al mode! Al model
% %
service / tool service / tool
- 4 - J

Once untrusted data enters the system, the execution flow is marked as tainted, and every
downstream tool and resources are also considered to be untrusted. Tainted components
should be isolated from the rest of the system, to mitigate downstream impact to the
system.

9 Harang, R., & Sablotny, M. Agentic Autonomy Levels and Security. NVIDIA.

(2}
>
L
=
(2}
>
()
<
O]
=
o
o)
@]
L
n
Z
@)
b
2
o
z
L
o
(@)
<
z
<
<
Q
-
Z
L
o
<
O]
=
oc
2
©]
L
(0}

https://developer.nvidia.com/blog/agentic-autonomy-levels-and-security/

STEP 2 - Prioritise areas to address based on
risk/impact/resources

Prioritise which of the identified risks to address, based on the likelihood, impact, available
resources, and risk appetite.

STEP 3 - Identify and implement the relevant
actions to secure the agentic Al system

Identify relevant actions and control measures to secure the agentic Al system, such as by
referencing those outlined in CSA’s Companion Guide on Securing Al Systems as well as
in Section 4.2 of this Addendum and implement these across the Al life cycle.

STEP 4 - Evaluate residual risks for mitigation or
acceptance

Evaluate the residual risk after implementing security measures for the Al system to inform
decisions about accepting or addressing residual risks.

Risk Management for SaaS Environments

For organisations using Software-as-a-Service (SaaS) agentic Al systems, detailed threat
modelling and taint tracing may prove impractical due to limited visibility into third-party
system architectures and data flows. Many security controls identified through these
processes may be unimplementable, as they remain under the vendor's control rather
than the organisation's direct management. However, understanding these risks remains
crucial for informed decision-making.

The threat identification and assessment processes outlined in this document enable
organisations to articulate specific security concerns to vendors, demanding appropriate
mitigations or transparency about existing controls.

Where vendors cannot or will hot address identified risks, organisations must escalate
these findings to management for formal risk acceptance decisions. Additionally, red
teaming exercises become essential for SaaS deployments, as they can uncover practical
vulnerabilities and attack paths that theoretical threat modelling cannot reveal—
particularly important when organisations have limited insight into the actual
implementation of third-party systems. These empirical testing approaches help validate

whether vendor-claimed security measures actually protect against real-world threats.

(2}
>
L
=
(2}
>
()
<
O]
=
o
o)
@]
L
(7]
Z
@)
b
2
o
z
L
o
(@)
<
z
<
<
Q
-
Z
L
o
<
O]
=
oc
2
©]
L
(0}

Implementing Controls for Visibility at Enterprise-scale

A key consideration for organisations is how to implement these steps practically,
meaningfully, and at scale. One example mechanism is through the implementation of a
middleware providing a single enforcement plane where identity and access management
(agents identified with service principals, assigned roles in accordance with the least
privilege principle, authenticated through OAuth2/OIDC with short-lived and scoped
tokens), guardrails (input and output), data loss prevention, and policy controls apply
consistently. Organisations adopting this mechanism route all agent-initiated calls (to
SaaS APls, internal services, data lakes, etc.) through a central gateway (APl gateway, MCP
gateway (if using an agentic runtime), service mesh ingress (for agent-to-microservice
calls), etc.). Further, logs from the middleware are streamed into a SIEM for SOC
monitoring, and processes are in-place to revoke agent access when anomalous access
is detected.

Periodic re-evaluation

The risk assessment should not be a one-time activity, but done throughout a system’s
operational lifetime. It is important to periodically re-evaluate threat models and controls,
especially after significant system changes (e.g., updates to agent workflows, capabilities,
or autonomy levels).

(2}
>
L
=
(2}
>
()
<
O]
=
o
o)
@]
L
n
Z
@)
b
2
o
z
L
o
(@)
<
z
<
<
Q
-
Z
L
o
<
O]
=
oc
2
©]
L
(0}

(2}
>
L
=
(2}
>
()
<
O]
=
o
o)
@]
L
n
Z
@)
b
2
o
z
L
o
(@)
<
z
<
<
Q
-
Z
L
o
<
O]
=
oc
2
©]
L
(0}

4.2. IDENTIFY THE RELEVANT
MEASURES & CONTROLS

Based on the risk assessment, system owners can identify the relevant treatment
measures/controls from the following tables. Each treatment measure/control plays a
different role, and should be assessed for relevance and priority in addressing the security
risks specific to your agentic Al system and context (Refer to Section 4.1).

As a start, we recommend users to consider all controls related to the baseline elements,
and then to layer on those specific to each capability.

- Related threats/risks indicated serve as examples and are not exhaustive. They
might differ based on your organisation’s use case.

- Related components/capabilities for each measure/control are also provided to
help you quickly identify what is relevant. Baseline risks are applicable to most, if not
all agentic Al systems and should be addressed if possible.

- Example implementations are included for each measure/control as a more
tangible elaboration on how they can be applied. These are also not exhaustive.

- Additional references and resources are provided for users of this document to
obtain further details on applying the treatment measure/control if required.

As with the Companion Guide, the controls are organised using a lifecycle approach to
systematically enumerate every potential mitigation throughout the development lifecycle.

4.3. TREATMENT MEASURES / CONTROLS FOR AGENTIC Al SYSTEMS

1. PLANNING AND DESIGN

accordance with the relevant
industry standards/best
practices.

Responsible Parties:
Decision Makers, Al
Practitioners, Cybersecurity
Practitioners

standards/best practices may
lead to insufficient, inefficient or
ineffective mitigations against
adversarial threats.

Tainted componentsin an
agentic Al system can have
downstream impact along the
workflow.

modelling, perform taint tracing across
workflows throughout the agentic Al
system. Taint tracing is especially
important for agentic Al systems of
higher autonomy levels (i.e. levels 2 and
3).

Users are not limited to only one method
of threat modelling and may adopt other
relevant methods that address their
needs.

Treatment Measures / Related Threats / Risks Related Example Implementation Reference / Resource
Controls component/
capabilities
1.1 Conduct arisk assessmentin | Failure to comply with industry Baseline As part of arisk assessment and threat e Chapter 3.2 TAINT TRACING -

IDENTIFYING THREATS ALONG
WORKFLOWS

e Chapter 5 USE CASE EXAMPLE

e NVIDIA, Agentic Autonomy Levels
and Security

e OWASP GenAl Security Project -
Multi-Agentic system Threat
Modelling Guide

e Cloud Security Alliance, Agentic Al

Threat Modelling Framework:
MAESTRO

31

https://developer.nvidia.com/blog/agentic-autonomy-levels-and-security/
https://developer.nvidia.com/blog/agentic-autonomy-levels-and-security/
https://genai.owasp.org/resource/multi-agentic-system-threat-modeling-guide-v1-0/
https://genai.owasp.org/resource/multi-agentic-system-threat-modeling-guide-v1-0/
https://genai.owasp.org/resource/multi-agentic-system-threat-modeling-guide-v1-0/
https://cloudsecurityalliance.org/blog/2025/02/06/agentic-ai-threat-modeling-framework-maestro
https://cloudsecurityalliance.org/blog/2025/02/06/agentic-ai-threat-modeling-framework-maestro
https://cloudsecurityalliance.org/blog/2025/02/06/agentic-ai-threat-modeling-framework-maestro

2. DEVELOPMENT

Treatment Measures /
Controls

Related Threats / Risks

Related
component /
capabilities

Example Implementation

Reference / Resource

2.1 Supply Chain Security: Ensure
the following components are
from trusted sources:

° data,
° models,
e agents,

e software libraries and
dependencies,

e developertools and
applications,

e packages from MCP
servers.

Responsible Parties:
Decision Makers, Al
Practitioners, Cybersecurity
Practitioners

Introduction of bugs, Baseline If procuring any Al System or component | e CSA Critical Information
vulnerabilities, unwanted or from a vendor, check/ensure suppliers Infrastructure Supply Chain
malicious content, poisoned adhere to the policies and security Programme
models or rogue agents from standards equivalent to your thatof your | ¢ NCSC Supply Chain Guidance
third-party systems can lead to organisation. This could be done by e Supply-chain Levels for Software
downstream impact. establishing a Service Level Agreement Artifacts (SLSA)
(SLA) with the vendor. e MITRE Supply Chain Security

Framework

Vulnerabilities in third-party Baseline Integrate software composition analysis . pip-audit

libraries and dependencies used
by the agent can cause the
system to be exploited.

(SCA) tools or use package managers.

Regularly scan dependencies and
update libraries with known
vulnerabilities.

. GitLab Dependency Scanning
. GitHub Dependabot

. Snyk Open Source

Collaborative model poisoning
corrupting models across
multiple agents. Specific to multi-
agent training.

Baseline: LLM

Source data from trusted repositories.
Apply data sanitisation and filtering,
such as through deduplication and
classifier-based quality checks.

° Introduction to Training Data
Poisoning: A Beginner’s Guide,
Lakera

Poorly aligned LLMs may pursue
objectives which violate security
principles.

Baseline: LLM

Review the LLM's model card for
potential alignment issues before using
the LLM for more complex tasks.

. Model Cards, Hugging Face
. Model Cards for Model Reporting

Poisoned models may introduce
hidden model backdoors in the
system which may be used by an
adversary to perform unwanted
actions.

Baseline: LLM

Do not use LLMs from unknown or
untrusted sources, even if it is available
on public platforms.

Scan models to detect for potential
backdoors or RCE scripts.

. Pickle Scanning

Poorly implemented tools may
not correctly verify user identity
or permissions when executing
privileged actions, allowing
unauthorised actions.

Baseline: Tools

Do not use tools which do not implement
robust authentication protocols.

. How to choose a known, trusted
supplier for open source software,

Google

32

https://www.csa.gov.sg/resources/publications/critical-information-infrastructure-supply-chain-programme-paper
https://www.csa.gov.sg/resources/publications/critical-information-infrastructure-supply-chain-programme-paper
https://www.csa.gov.sg/resources/publications/critical-information-infrastructure-supply-chain-programme-paper
https://www.ncsc.gov.uk/collection/supply-chain/guidance
https://slsa.dev/
https://slsa.dev/
https://sot.mitre.org/framework/system_of_trust.html
https://sot.mitre.org/framework/system_of_trust.html
https://pypi.org/project/pip-audit/
https://docs.gitlab.com/user/application_security/dependency_scanning/
https://docs.github.com/en/code-security/getting-started/dependabot-quickstart-guide
https://docs.snyk.io/scan-with-snyk/snyk-open-source
https://www.lakera.ai/blog/training-data-poisoning
https://www.lakera.ai/blog/training-data-poisoning
https://huggingface.co/docs/hub/en/model-cards
https://arxiv.org/abs/1810.03993
https://huggingface.co/docs/hub/security-pickle
https://cloud.google.com/blog/products/identity-security/how-to-choose-a-known-trusted-supplier-for-open-source-software
https://cloud.google.com/blog/products/identity-security/how-to-choose-a-known-trusted-supplier-for-open-source-software
https://cloud.google.com/blog/products/identity-security/how-to-choose-a-known-trusted-supplier-for-open-source-software

Treatment Measures /
Controls

Related Threats / Risks

Related
component/
capabilities

Example Implementation

Reference / Resource

Rogue tools that mimic legitimate
ones can contain hidden
malicious code that executes
when loaded.

Baseline: Tools

Do not use tools from unknown or
untrusted sources, even if it is available
on public platforms.

Direct promptinjection from
untrusted MCP servers, causing
unwanted instructions to be
carried out.

Baseline: Tools

Exercise caution when using community-
run MCP servers. When possible, use
official repositories or well-known
sources for MCP servers.

o ANNEXB -Model Context Protocol

. MCP: Untrusted Servers and
Confused Clients, Plus a Sneaky
Exploit, Embrace The Red

e The Vulnerable MCP Project

. Model Context Protocol (MCP):
Understanding security risks and
controls, Red Hat Blog

Indirect promptinjection attacks
via malicious website content
cause unwanted actions to be
executed.

Interaction:
Internet & Search
Access

Use structured retrieval APIs for
searching the web rather than through
web scraping.

. Custom Search JSON API, Google

Returning unreliable information
from websites, causing
downstream integrity impact on
workflows

Interaction:
Internet & Search
Access

Prioritise results from verified, high-
quality domains (e.g. .gov, .edu, well-
known publishers)

Ensure adequate cross-source validation
for some of the claims made.

° What are credible sources?
University of the Sunshine Coast
Australia

Supply chain attacks which
impact downstream workflows.

Interaction:
Other
Programmatic
Interfaces

Where possible, enforce zero-trust input
handling and validate all data flows.

. NIST SP 800-207 Zero Trust
Architecture

Indirect prompt injection attacks
via malicious data or files cause
unwanted actions to be
executed.

Operational: File
& Data
Management

Validate new data used to supplement
RAG databases or training data.

° Introduction to Training Data
Poisoning: A Beginner’s Guide,
Lakera

2.2

Consider model hardening if
appropriate.

Responsible Parties:
Al Practitioners

LLMs with weak performance in
instruction following might
produce unexpected output,
leading to unwanted behaviour.

Baseline: LLM

Prioritise LLMs with stronger
performance in instruction following or
related capabilities to the task.
Benchmarks performance may be used
to gauge suitability.

. Instruction Following Score, Daily
Papers, Hugging Face

Al agents execute disallowed
tasks for malicious purposes.

Baseline: LLM

Train models to recognise and refuse
disallowed tasks.

° Refuse Whenever You Feel Unsafe:
Improving Safety in LLMs via
Decoupled Refusal Training

33

https://embracethered.com/blog/posts/2025/model-context-protocol-security-risks-and-exploits/
https://embracethered.com/blog/posts/2025/model-context-protocol-security-risks-and-exploits/
https://embracethered.com/blog/posts/2025/model-context-protocol-security-risks-and-exploits/
https://vulnerablemcp.info/
https://www.redhat.com/en/blog/model-context-protocol-mcp-understanding-security-risks-and-controls
https://www.redhat.com/en/blog/model-context-protocol-mcp-understanding-security-risks-and-controls
https://www.redhat.com/en/blog/model-context-protocol-mcp-understanding-security-risks-and-controls
https://developers.google.com/custom-search/v1/overview
https://libguides.usc.edu.au/credible/web
https://libguides.usc.edu.au/credible/web
https://libguides.usc.edu.au/credible/web
https://nvlpubs.nist.gov/nistpubs/specialpublications/NIST.SP.800-207.pdf
https://nvlpubs.nist.gov/nistpubs/specialpublications/NIST.SP.800-207.pdf
https://www.lakera.ai/blog/training-data-poisoning
https://www.lakera.ai/blog/training-data-poisoning
https://huggingface.co/papers?q=Instruction%20Following%20Score%20(IFS)
https://huggingface.co/papers?q=Instruction%20Following%20Score%20(IFS)
https://arxiv.org/abs/2407.09121
https://arxiv.org/abs/2407.09121
https://arxiv.org/abs/2407.09121

Treatment Measures /
Controls

Related Threats / Risks

Related
component/
capabilities

Example Implementation

Reference / Resource

2.3 Consider implementing Introduction of bugs, Baseline Adopt Security by Design. ° NIST SP 800-218 Secure Software
techniques to vulnerabilities through insecure Apply software development lifecycle Development Framework (SSDF)
strengthen/harden the coding practices or design (SDLC) process. Version 1.1
system apart from Use software development tools to e NIST SP 800-207 Zero Trust
strengthening the model check for insecure coding practices. Architecture
itself. Implement zero trust principles in

system design.
Responsible Parties: Lack of a robust system prompt Baseline: Implement robust system prompt . Developing a Robust System
Al Practitioners, design can lead to an increased Instruction design. Prompt, Code Signal
Cybersecurity Practitioners susceptibility to prompt injection e ACloser Look at System Prompt
attacks and risk of executing Robustness
unwanted tasks.
Insecure coding practices leading | Baseline: Agentic | Adopt secure coding practices. e Secrets Management Cheat Sheet,
to vulnerabilities in the system Architecture E.g. secure key management via using OWASP
dependency injection, or secrets e Dependency Injection:
management service. Do not hardcode - Tools Dependency Injection, AG2
secrets. - How to pass runtime values to
tools (InjectedToolArg), LangChain
e Secrets Management Services:
- HashiCorp Vault
- AWS Secrets Manager
- Google Secret Manager
2.4 Identify, Track and Protect Al Loss of data integrity such as Baseline Establishing a data lineage and software e Software Bill of Materials (SBOM),

system assets

Responsible Parties:
Al Practitioners,
Cybersecurity Practitioners

through unauthorised changes to
data, model, agents or system.

Lack of proper documentation of
resources may result in the wrong
or outdated tool being used by
model, causing unwanted
behaviour or output and
vulnerabilities present.

Coghnitive: Tool
Use

license management process. This
includes documenting the data, codes,
test cases, models and agents, including
any changes made and by whom.

Model cards, Agent cards, Data cards,
and Software Bill of Materials (SBOMs)
may be used.

e.g. provide comprehensive descriptions
of each tool, including its intended use,
required inputs, and potential outputs

CISA

° The ultimate guide to SBOMs,
GitLab

. Model Cards, Hugging Face

. Model Cards for Model Reporting

Agents may inadvertently store
sensitive user or organisational
data from prior interactions,
resulting in data privacy risks.

Baseline:
Memory

Encrypt data at rest and restrict access
via fine-grained access controls and
audit logs.

. Cryptographic Standards and
Guidelines, NIST

. Guide to Data Protection Practices
for ICT Systems, PDPC

34

https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-218.pdf
https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-218.pdf
https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-218.pdf
https://nvlpubs.nist.gov/nistpubs/specialpublications/NIST.SP.800-207.pdf
https://nvlpubs.nist.gov/nistpubs/specialpublications/NIST.SP.800-207.pdf
https://codesignal.com/learn/courses/building-a-chatbot-service-with-fastapi/lessons/crafting-a-robust-system-prompt-for-chatbot-interaction
https://codesignal.com/learn/courses/building-a-chatbot-service-with-fastapi/lessons/crafting-a-robust-system-prompt-for-chatbot-interaction
https://arxiv.org/abs/2502.12197
https://arxiv.org/abs/2502.12197
https://cheatsheetseries.owasp.org/cheatsheets/Secrets_Management_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Secrets_Management_Cheat_Sheet.html
https://docs.ag2.ai/latest/docs/blog/2025/01/07/Tools-Dependency-Injection/
https://python.langchain.com/docs/how_to/tool_runtime/
https://python.langchain.com/docs/how_to/tool_runtime/
https://github.com/hashicorp/vault
https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
https://cloud.google.com/secret-manager/docs/overview
https://www.cisa.gov/sbom
https://www.cisa.gov/sbom
https://about.gitlab.com/blog/the-ultimate-guide-to-sboms/
https://huggingface.co/docs/hub/en/model-cards
https://arxiv.org/abs/1810.03993
https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines
https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines
https://www.pdpc.gov.sg/-/media/files/pdpc/pdf-files/other-guides/tech-omnibus/guide-to-data-protection-practices-for-ict-systems.pdf
https://www.pdpc.gov.sg/-/media/files/pdpc/pdf-files/other-guides/tech-omnibus/guide-to-data-protection-practices-for-ict-systems.pdf

Treatment Measures /
Controls

Related Threats / Risks

Related
component/
capabilities

Example Implementation

Reference / Resource

2.5 Have regular backups in the Manipulation of memory systems | Baseline: Ensure adequate Al-generated memory . LangMem, LangChain
event of compromise. and context, causing flawed Memory snapshots for forensic analysis and
decision making and rollback if anomalies are detected.
Responsible Parties: unauthorised operations.
Al Practitioners, Execution of insecure code by the | Operational: Ensure proper versioning controlof code | e \What is version control? GitLab
Cybersecurity Practitioners model or agents may cause Code Execution to allow rollbacks to a more secure and e Guide to Data Protection Practices
unwanted actions to be stable version. for ICT Systems, PDPC
performed
Loss of data through overwritten Operational: File Keep a separate backup of original files.
or deleted files & Data Ensure backup copy of database is
Management protected from changes until a specified
duration has elapsed, based on
organisation’s backup policy.
Ensure proper versioning of files or
database.
2.6 Implement appropriate Unauthorised changes in a Baseline: Have robust authentication mechanisms | ¢ Authentication Cheat Sheet,
authentication, authorisation model's context. Memory for memory access. OWASP

and access controls to APIs,
models, data, logs, tools and
the environments that they
arein.

Responsible Parties:
Al Practitioners,
Cybersecurity Practitioners

Unauthorised tool usage.

Baseline: Tools

Enforce strict tool access verification
where possible.

Agents may gain unauthorised
access to restricted resources by
exploiting misconfigured or overly
permissive roles.

Baseline: Roles &
Access Controls

Maintain trusted registry of agents and
authenticate agents using strong,
verifiable credentials.

Apply strict access controls and validate
agentroles for requests.

Ensure fine-grained, scoped tokens or
credentials where possible.

Use time-bound or one-time-use
credentials where possible.

Exploitation of vulnerabilities in

Baseline: Roles

Implement granular permission controls,

permission management. and Access and dynamic access validation.
Controls

Exploitation of the orchestration Baseline: Roles Implement robust authentication

layer to perform malicious and Access mechanisms for orchestration layer

activities using existing agents. Controls access.

Chained authorisation in multi-
agent systems can cause
downstream agents to execute
malicious tasks without checking
for permissions.

Baseline: Agentic
Architecture

Validate permissions on every request to
each agent in the workflow.

e Which OAuth 2.0 Flow Should | Use?
auth0

. Security best practice in IAM, AWS

. AWS Prescriptive Guidance:
Operationalizing agentic Al on AWS

35

https://langchain-ai.github.io/langmem/
https://about.gitlab.com/topics/version-control/
https://www.pdpc.gov.sg/-/media/files/pdpc/pdf-files/other-guides/tech-omnibus/guide-to-data-protection-practices-for-ict-systems.pdf
https://www.pdpc.gov.sg/-/media/files/pdpc/pdf-files/other-guides/tech-omnibus/guide-to-data-protection-practices-for-ict-systems.pdf
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html
https://auth0.com/docs/get-started/authentication-and-authorization-flow/which-oauth-2-0-flow-should-i-use
https://auth0.com/docs/get-started/authentication-and-authorization-flow/which-oauth-2-0-flow-should-i-use
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-operationalizing-agentic-ai/introduction.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-operationalizing-agentic-ai/introduction.html

Treatment Measures /
Controls

Related Threats / Risks

Related
component/
capabilities

Example Implementation

Reference / Resource

Leaking personally identifiable or | Interaction: Agents accessing sensitive tools or data e Short-lived API tokens:
sensitive data Other should operate under the principle of - What Are Refresh Tokens and How
Programmatic least privilege in time. to Use Them Securely, authO
Interfaces - JSON Web Tokens, authQ
Use short-lived, rotating credentials e Temporary cloud credentials:
(ephemeral credentials) that expire - Use temporary credentials with
immediately after agent use. AWS resources, AWS
- About IAM authentication, Google
Implement a whitelist approach for Cloud
interfaces that agents are allowed to
use.
Man-in-the-middle attacks Operational: Ensure all cross-agent authentication . Authentication Cheat Sheet,
arising from insecure Agent and message validation and encryption OWASP
communications Communication where necessary
Exfiltration of sensitive data Operational: Implement a whitelist approach for ° Control subnet traffic with network
Agent outward network access, including API access control lists, AWS
Communication requests e Whatis an IP based access control
Executing vulnerable or malicious | Operational: Implement a whitelist approach for list (ACL)? Microsoft Azure

code

Code Execution

inward network access

2.7

Implement controls to limit
what models or agents can
access and generate.

Responsible Parties:
Decision Makers, Al
Practitioners, Cybersecurity
Practitioners

Abuse of agent-accessible tools
to execute unintended actions.

Baseline: Tools

Establish clear operational boundaries
to prevent misuse of tools. Set limits on
what agents can modify through
appropriate guardrails.

° Implementing effective guardrails
for Al agents

° Authorization Cheat Sheet, OWASP

e Which OAuth 2.0 Flow Should | Use?

Agents gain unauthorised and
excessive privileges to perform
unwanted actions outside the
given scope.

Baseline: Roles
and Access
Controls

Implement a policy-evaluation engine
that assesses authorisation requests
dynamically at runtime.

Prevent cross-agent privilege delegation
unless explicitly authorised through
predefined workflows.

Do not grant admin privileges to agents,
unless strictly necessary for completion
of tasks.

Compromised agents act outside
their operational boundaries and
perform unintended actions.

Baseline: Roles
and Access
Controls

Restrict Al agent autonomy using policy
constraints.

Scope agent privileges dynamically:
strictly only to what is necessary to run
the tasks.

Do not allow agents to modify privileges.

Assigning tasks incorrectly to
other agents

Cognitive: Agent
Delegation

Apply guardrails to limit the scope of
tasks that can be assigned to specialised
agents.

auth0
° Security best practice in IAM, AWS
. OAuth Scopes, OAuth 2.0
. AWS Prescriptive Guidance:
Operationalizing agentic Al on AWS
. MI9 - Agent Intelligence Protocol:
Runtime Governance for Agentic Al
Systems

36

https://auth0.com/blog/refresh-tokens-what-are-they-and-when-to-use-them/
https://auth0.com/blog/refresh-tokens-what-are-they-and-when-to-use-them/
https://auth0.com/docs/secure/tokens/json-web-tokens
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://cloud.google.com/memorystore/docs/valkey/about-iam-auth
https://cloud.google.com/memorystore/docs/valkey/about-iam-auth
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-network-acls.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-network-acls.html
https://learn.microsoft.com/en-us/azure/virtual-network/ip-based-access-control-list-overview
https://learn.microsoft.com/en-us/azure/virtual-network/ip-based-access-control-list-overview
https://about.gitlab.com/the-source/ai/implementing-effective-guardrails-for-ai-agents/
https://about.gitlab.com/the-source/ai/implementing-effective-guardrails-for-ai-agents/
https://cheatsheetseries.owasp.org/cheatsheets/Authorization_Cheat_Sheet.html
https://auth0.com/docs/get-started/authentication-and-authorization-flow/which-oauth-2-0-flow-should-i-use
https://auth0.com/docs/get-started/authentication-and-authorization-flow/which-oauth-2-0-flow-should-i-use
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://oauth.net/2/scope/
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-operationalizing-agentic-ai/introduction.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-operationalizing-agentic-ai/introduction.html
https://arxiv.org/abs/2508.03858
https://arxiv.org/abs/2508.03858
https://arxiv.org/abs/2508.03858

Treatment Measures /
Controls

Related Threats / Risks

Related
component/
capabilities

Example Implementation

Reference / Resource

Excessive agent privileges to
access unintended resources on
the computer, causing potential
security impact.

Interaction:
Computer Use

Limit computer usage to accessing only
required resources on the computer.

Exfiltration of sensitive data
through insecure
communications between
agents.

Operational:
Agent
Communication

Ensure that sensitive data is not passed
and leaked between agents by using
appropriate guardrails.

Misinterpreting inter-agent
messages due to poor formatting
or weak protocols

Operational:
Agent
Communication

Constrain agent communication with
structured outputs and interactions.

e Agent Communication Protocol
(ACP)

e Agentto Agent (A2A) Protocol

e Model Context Protocol (MCP)

Impersonating or accessing peer | Operational: Isolate roles and credentials of each . Security best practice in IAM, AWS
agents or services via shared Agent agent.

roles or credentials Communication

Lack of proper whitelist controls Operational: Create a whitelist of commands that e InputValidation Cheat Sheet,

may lead to the execution of
vulnerable or malicious code.

Code Execution

agents are allowed to run autonomously.
Deny execution of all other commands
that are not whitelisted.

OWASP

Misconfiguring system resources,
compromising system integrity
and availability

Operational:
System
Management

Only grant agents privileges to modify
system resources if strictly necessary for
completion of tasks. Set minimum and
maximum limits to what can be
modified.

. OAuth Scopes, OAuth 2.0

Exposure of personally
identifiable information in files.

Operational: File
& Data
Management

Whitelist only files which are required for
the task. Do not grant access to files
known to host private or sensitive
information without careful
consideration of the risks.

Consider using data anonymisation
techniques instead.

° Advisory Guidelines on use of
Personal Data in Al
Recommendation and Decision
Systems, PDPC

. Guide to Basic Anonymisation,
PDPC

2.8

Apply the principle of least
privilege. Ensuring
configurations are secure by
default.

Responsible Parties:
Al Practitioners,
Cybersecurity Practitioners

Agents having unauthorised
access to restricted resources by
exploiting misconfigured or overly
permissive roles.

Baseline: Roles &
Access Controls

Apply principle of least privilege when
configuring all agent and delegation
roles.

Agents having privileges/rights to
execute untrusted or malicious
code

Operational:
Code Execution

Scope execution privileges strictly only
to what is necessary, ensuring that
privileges are customised to each agent
within a system.

e Authorization Cheat Sheet, OWASP

e Security best practice in IAM, AWS

° Guide to Basic Anonymisation,
PDPC

37

https://www.ibm.com/think/topics/agent-communication-protocol
https://www.ibm.com/think/topics/agent-communication-protocol
https://a2aproject.github.io/A2A/latest/topics/what-is-a2a/
https://modelcontextprotocol.io/introduction
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
https://oauth.net/2/scope/
https://www.pdpc.gov.sg/guidelines-and-consultation/2024/02/advisory-guidelines-on-use-of-personal-data-in-ai-recommendation-and-decision-systems
https://www.pdpc.gov.sg/guidelines-and-consultation/2024/02/advisory-guidelines-on-use-of-personal-data-in-ai-recommendation-and-decision-systems
https://www.pdpc.gov.sg/guidelines-and-consultation/2024/02/advisory-guidelines-on-use-of-personal-data-in-ai-recommendation-and-decision-systems
https://www.pdpc.gov.sg/guidelines-and-consultation/2024/02/advisory-guidelines-on-use-of-personal-data-in-ai-recommendation-and-decision-systems
https://www.pdpc.gov.sg/-/media/files/pdpc/pdf-files/advisory-guidelines/guide-to-basic-anonymisation-(updated-24-july-2024).pdf
https://www.pdpc.gov.sg/-/media/files/pdpc/pdf-files/advisory-guidelines/guide-to-basic-anonymisation-(updated-24-july-2024).pdf
https://cheatsheetseries.owasp.org/cheatsheets/Authorization_Cheat_Sheet.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://www.pdpc.gov.sg/-/media/files/pdpc/pdf-files/advisory-guidelines/guide-to-basic-anonymisation-(updated-24-july-2024).pdf
https://www.pdpc.gov.sg/-/media/files/pdpc/pdf-files/advisory-guidelines/guide-to-basic-anonymisation-(updated-24-july-2024).pdf

Treatment Measures /
Controls

Related Threats / Risks

Related
component/
capabilities

Example Implementation

Reference / Resource

Do not grand admin or sudo privilege by
default.

Block all inward and outward network
access by default.

Agents having privileges/rights to
overwrite or delete database
tables orfiles

Operational: File
& Data
Management

No write access to tables in the
database unless strictly required, with
consideration of risks of data loss.

Exposure of personally
identifiable or sensitive data from

Operational: File
& Data

Restrict access to personally identifiable
data or sensitive data unless strictly

databases or files to users Management required, with consideration of risks of
data exposure.
Consider data anonymisation
techniques instead.

Escalation of the agent's own Operational: Scope system privileges strictly only to

privileges may allow it to be used System whatis necessary.

to access restricted resources. Management Do not grant admin privileges to agents.

Do not allow agents to modify privileges.

2.9

Implement segregation of
environments and network
segmentation.

Responsible Parties:
Al Practitioners,
Cybersecurity Practitioners

Rogue tools that mimic legitimate
ones can contain hidden
malicious code that executes
when loaded and gain access to
other assets within the
environment or network.

Baseline: Tools

Test third-party tools in hardened
sandboxes with syscall/network egress
restrictions before using them in
production environments.

. Sandboxing Agentic Al Workflows
with WebAssembly, NVIDIA

e E2BSDK

. E2B Data Analysis, LangChain

. Docker Security Cheat Sheet,
OWASP

Promptinjection attacks and
indirect data manipulation
through access to other assets
within the environment or
network.

Baseline: Agentic
Architecture

Decouple data processing flow from
control flow through runtime security
architecture.

. Defeating Prompt Injections by
Design (CaMel), Google DeepMind

Promptinjection attacks to
perform credential and/or data
exfiltration through access to
other assets within the
environment or network

Interaction:
Business
Transactions

Ensure virtualisolation for agents
carrying out transactions.

Do not share credentials with the agent
directly, require the agenttouse a
separate service for authentication and
transactions.

. Advancing Zero Trust Maturity
Throughout the Network and
Environment Pillar, NSA

Execution of insecure or
malicious scripts that affects the
other components of the
environment or network

Operational:
Code Execution

Run code in virtually isolated compute
environments (e.g. Docker, Podman
containers).

Sandbox the execution of Al generated
scripts. Monitor the execution.

e Sandboxing Agentic Al Workflows
with WebAssembly, NVIDIA

e E2BSDK, E2B

e E2B Data Analysis, LangChain

. Docker Security Cheat Sheet,
OWASP

38

https://developer.nvidia.com/blog/sandboxing-agentic-ai-workflows-with-webassembly/
https://developer.nvidia.com/blog/sandboxing-agentic-ai-workflows-with-webassembly/
https://github.com/e2b-dev/E2B
https://python.langchain.com/docs/integrations/tools/e2b_data_analysis/
https://cheatsheetseries.owasp.org/cheatsheets/Docker_Security_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Docker_Security_Cheat_Sheet.html
https://arxiv.org/abs/2503.18813
https://arxiv.org/abs/2503.18813
https://media.defense.gov/2024/Mar/05/2003405462/-1/-1/0/CSI-ZERO-TRUST-NETWORK-ENVIRONMENT-PILLAR.PDF
https://media.defense.gov/2024/Mar/05/2003405462/-1/-1/0/CSI-ZERO-TRUST-NETWORK-ENVIRONMENT-PILLAR.PDF
https://media.defense.gov/2024/Mar/05/2003405462/-1/-1/0/CSI-ZERO-TRUST-NETWORK-ENVIRONMENT-PILLAR.PDF
https://developer.nvidia.com/blog/sandboxing-agentic-ai-workflows-with-webassembly/
https://developer.nvidia.com/blog/sandboxing-agentic-ai-workflows-with-webassembly/
https://github.com/e2b-dev/E2B
https://python.langchain.com/docs/integrations/tools/e2b_data_analysis/
https://cheatsheetseries.owasp.org/cheatsheets/Docker_Security_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Docker_Security_Cheat_Sheet.html

Treatment Measures /
Controls

Related Threats / Risks

Related
component/
capabilities

Example Implementation

Reference / Resource

2.10 | Implement model self- Incomplete or unclear Baseline: Ask the agent to summarise its e Self-Reflecting Al Agents using
reflection before making instructions may compel models Instructions understanding and request clarification LangChain
decisions, where applicable to attempt to fill in missing before proceeding. e AWS Prescriptive Guidance:

constraints, resulting in incorrect Operationalizing agentic Al on AWS

Responsible Parties: or unwanted actions being

Decision Makers, Al executed.

Practitioners Purpose drift, or unintended Coghnitive: Prompt the agent to self-reflect on the
deviation from the user's Planning & Goal adherence of the plan to the user's
instructions to perform other Management instructions.
tasks or pursuit other priorities,
resulting in malicious or
deceptive behaviour.

Incorrect assignment of tasks to Coghnitive: Prompt the agent to self-reflect and

other agents. Planning & Goal assess the suitability of tasks delegated
Management to agents.

Unintended pursuit or Coghnitive: Understand the reasoning and self-

prioritisation of other goals, Reasoning & reflection done by the agent through

resulting in malicious or Problem-Solving visualisation of its thought process.

deceptive behaviour. Log the output in the console for the user

to evaluate and verify.

2.11 | Implement controls to reduce | Agents may mistakenly store Baseline: Schedule periodic memory . Mem0O: Building Production-Ready
the likelihood of glitches and hallucinations into Memory reconciliation, where human reviewers Al Agents with Scalable Long-Term
hallucination. memory, resulting in or external tools can flag anomalies. Memory

compounding errors when e Zep: ATemporal Knowledge Graph

Responsible Parties: incorrect information is retrieved Architecture for Agent Memory

Decision Makers, Al for decisions or actions.

Practitioners Generating non-factual or Interaction: Implement features to verify the ° RAG and the value of grounding,

hallucinated content which can
propagate downstream and
cause compounding errors that
can affect the integrity of the
output.

Natural Language
Communication

Interaction:
Multimodal
Understanding &
Generation

generated answer against the original
content.

Conduct testing to measure
hallucination and factuality rates for
outputs.

Implement UI/UX cues to highlight the
risk of hallucination to the user.
Implement Retrieval Augmented
Generation (RAG) to keep the model
grounded and contextualised.

elastic search labs

39

https://vijaykumarkartha.medium.com/self-reflecting-ai-agents-using-langchain-d3a93684da92
https://vijaykumarkartha.medium.com/self-reflecting-ai-agents-using-langchain-d3a93684da92
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-operationalizing-agentic-ai/introduction.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-operationalizing-agentic-ai/introduction.html
https://arxiv.org/abs/2504.19413v1
https://arxiv.org/abs/2504.19413v1
https://arxiv.org/abs/2504.19413v1
https://arxiv.org/abs/2501.13956
https://arxiv.org/abs/2501.13956
https://www.elastic.co/search-labs/blog/grounding-rag
https://www.elastic.co/search-labs/blog/grounding-rag

3. DEPLOYMENT

Treatment Measures /
Controls

Related Threats / Risks

Related
component /
capabilities

Example Implementation

Reference / Resource

3.1

Ensure availability controls
are in place to mitigate
disruption or failure of Al
services

Responsible Parties:
Al Practitioners,
Cybersecurity Practitioners

(Distributed) denial of service on
agents.

Baseline: Agentic
Architecture

Apply rate limits on the number of
concurrent queries to agents.

e APl Rate Limiting, GitHub Docs

Degradation of computational or

Baseline: System

Deploy resource management controls,

. IT & System Availability + High

service capability of the system. Workflows & implement adaptive scaling Availability: The Ultimate Guide,
Autonomy mechanisms and monitor system load to Splunk

detect and mitigate overload attempts in

real-time.

Implement rate limits on high-frequency

task requests per agent session.
Slow or inefficient responses Cognitive: Enforce time or token limits for e OverThink: Slowdown Attacks on
from being stuck in a reasoning Reasoning & reasoning. Reasoning LLMs

loop.

Problem Solving

Adjust short-term and long-term memory
options.

Exploitation of interactions
between agents to cause
resource exhaustion across the
system.

Operational:
Agentic
Communication

Enforce time or token limits for agent
reasoning.

Set a limit on the number of agent
interactions per task, based on the
requirements of the workflow.

Compromising database
availability through excessive
queries.

Operational: File
& Data
Management

Limit the number of concurrent queries
to the database from agents.

Analyse past database queries to identify
repeated or inefficient queries.

Overconsumption of compute
resources.

Operational:
Code Execution

Monitoring of code runtime and memory
consumption.

40

https://docs.github.com/en/rest/using-the-rest-api/rate-limits-for-the-rest-api?apiVersion=2022-11-28
https://www.splunk.com/en_us/blog/learn/availability.html
https://www.splunk.com/en_us/blog/learn/availability.html
https://www.splunk.com/en_us/blog/learn/availability.html
https://arxiv.org/abs/2502.02542
https://arxiv.org/abs/2502.02542

without achieving the intended
task.

more robust reward design, and add
constraints.

Treatment Measures / Related Threats / Risks Related Example Implementation Reference / Resource
Controls component/
capabilities
3.2 Conduct security testing Agents may contain underlying Baseline: LLM Behavioural testing of agents with ° Benchmarks:
problems which can cause benchmark datasets to determine - AgentBench
Responsible Parties: unexpected behaviour or logical performance metrics, and executing -HELM
Decision Makers, Al errors. simulations in regulated environments to - TheAgentCompany
Practitioners, Cybersecurity analyse agents' behaviour. - WebArena
Practitioners Automated evaluators can be used, but e Evaluation platforms with collection
human evaluators should verify the of benchmarks:
results of testing. - Inspect Evals (UK Al Safety
Institute, Arcadia Impact, Vector
Institute)
- Project Moonshot (Al Verify
Foundation)
Al may engage in specification Baseline: Conduct adversarial evaluation to e garak
gaming, where it maximises the Instructions discover specification gaming behaviour. | ¢ PromptFoo
goal by exploiting loopholes, Iterate on system prompt design, have e PyRIT

Incomplete or unclear
instructions may compel models
to attempt to fill in missing
constraints, resulting in incorrect
or unwanted actions being
executed.

Baseline:
Instructions

Test the efficacy of system prompts with
scenario-based evaluations for task
performing and problem solving.
Benchmarks may be used.

o ACloserLook at System Prompt
Robustness

Inconsistencies between Al Cognitive: Utilise deception detection strategies e Systematic Review of Software
outputs and expected reasoning Planning & Goal such as behavioural consistency Behavioral Model Consistency
pathways. Management analysis, truthfulness verification Checking

models, and adversarial red teaming.
Compromised agents may Cognitive: Have regular Al red teaming of agents to e Agentic Al Red Teaming Guide,
impact downstream decision Reasoning & check for potential vulnerabilities or Cloud Security Alliance

making.

Problem Solving

compromise.

Adversarial threats attempting to
compromise orchestration or
planning agents to use other
agents maliciously.

Cognitive: Tool
Use & Delegation

Conduct rigorous adversarial testing on
centralised orchestration and planning
agents.

° OWASP GenAl Red Teaming Guide
e NIST SP 800-115 Technical Guide to
Information Security Testing and

Assessment
e MITRE ATLAS

41

https://arxiv.org/abs/2308.03688
https://crfm.stanford.edu/helm/
https://the-agent-company.com/
https://webarena.dev/
https://ukgovernmentbeis.github.io/inspect_evals/
https://ukgovernmentbeis.github.io/inspect_evals/
https://ukgovernmentbeis.github.io/inspect_evals/
https://aiverify-foundation.github.io/moonshot/resources/datasets/
https://aiverify-foundation.github.io/moonshot/resources/datasets/
https://github.com/NVIDIA/garak
https://github.com/promptfoo/promptfoo
https://azure.github.io/PyRIT/
https://arxiv.org/abs/2502.12197
https://arxiv.org/abs/2502.12197
https://www.researchgate.net/publication/316938485_Systematic_Review_of_Software_Behavioral_Model_Consistency_Checking
https://www.researchgate.net/publication/316938485_Systematic_Review_of_Software_Behavioral_Model_Consistency_Checking
https://www.researchgate.net/publication/316938485_Systematic_Review_of_Software_Behavioral_Model_Consistency_Checking
https://cloudsecurityalliance.org/artifacts/agentic-ai-red-teaming-guide
https://genai.owasp.org/resource/genai-red-teaming-guide/
https://csrc.nist.gov/pubs/sp/800/115/final
https://csrc.nist.gov/pubs/sp/800/115/final
https://csrc.nist.gov/pubs/sp/800/115/final
https://atlas.mitre.org/matrices/ATLAS

Treatment Measures /
Controls

Related Threats / Risks

Related
component/
capabilities

Example Implementation

Reference / Resource

3.3 If deploying an MCP server, Insecure configurations allowing Baseline: Tools, Implement robust security measures to e ANNEXB - Model Context Protocol
ensure necessary security unauthorised access to tools, Baseline: Roles protect MCP servers, such as context- . MCP: Untrusted Servers and
measures are in place. models and data. and Access level access controls Confused Clients, Plus a Sneaky

Controls Have formal interface versioning, and Exploit, Embrace The Red
Responsible Parties: track where context is coming from. e OWASP GenAl Security Project -
Al Practitioners, Stay informed about emerging MCP Multi-Agentic system Threat
Cybersecurity Practitioners vulnerabilities and security best Modelling Guide
practices. e The Vulnerable MCP Project
Execution of malicious scripts Operational: Ensure code verification before MCP e Model Context Protocol (MCP):
through the MCP server, leading Code Execution functions are executed on servers. Understanding security risks and
to system compromise. Sandbox the execution. controls, Red Hat Blog
Introduction of malicious agent(s) | Baseline: Roles Verify that MCP agents are from trusted e MCPIs aSecurity Nishtmare —
into the ecosystem, which rapidly | and Access sources before introducing them into the Here’s How the Agent Security
corrupts other agents in the Control, system. Framework Fixes It
system. Cognitive: Tool Sanitise tool inputs.
Use & Delegation | Check that an MCP server has not
silently redefined their tools (MCP rug
pull).
3.4 Implement security controls Manipulation of communication Baseline: Roles Monitor inter-agent interactions for e Whatis Message Authentication

between agents.

Responsible Parties:
Al Practitioners,
Cybersecurity Practitioners

channels between agents to
disrupt workflows or influence
decisions.

and Access
Controls,
Operational:
Agentic
Communication

anomalies.

Enforce inter-agent authentication;
deploy cryptographic message
authentication if needed.

Enforce multi-agent task segmentation
to prevent attackers from escalating
privileges across interconnected agents.

Ensure multi-agent consensus
verification for critical decision-making
processes.

Sensitive data disclosure via
eavesdropping between agent
communications.

Operational:
Agentic
Communication

Ensure that sensitive data is not passed
on and leaked among agents through
appropriate guardrails.

For highly sensitive data, consider
applying end-to-end encryption.

Code? Fortinet
e Agentto Agent (A2A) Protocol
e JSON Web Tokens, authQ
e Whatis mutual TLS (mTLS)?
Cloudflare

42

https://embracethered.com/blog/posts/2025/model-context-protocol-security-risks-and-exploits/
https://embracethered.com/blog/posts/2025/model-context-protocol-security-risks-and-exploits/
https://embracethered.com/blog/posts/2025/model-context-protocol-security-risks-and-exploits/
https://genai.owasp.org/resource/multi-agentic-system-threat-modeling-guide-v1-0/
https://genai.owasp.org/resource/multi-agentic-system-threat-modeling-guide-v1-0/
https://genai.owasp.org/resource/multi-agentic-system-threat-modeling-guide-v1-0/
https://vulnerablemcp.info/
https://www.redhat.com/en/blog/model-context-protocol-mcp-understanding-security-risks-and-controls
https://www.redhat.com/en/blog/model-context-protocol-mcp-understanding-security-risks-and-controls
https://www.redhat.com/en/blog/model-context-protocol-mcp-understanding-security-risks-and-controls
https://medium.com/data-science-collective/mcp-is-a-security-nightmare-heres-how-the-agent-security-framework-fixes-it-fd419fdfaf4e
https://medium.com/data-science-collective/mcp-is-a-security-nightmare-heres-how-the-agent-security-framework-fixes-it-fd419fdfaf4e
https://medium.com/data-science-collective/mcp-is-a-security-nightmare-heres-how-the-agent-security-framework-fixes-it-fd419fdfaf4e
https://www.fortinet.com/resources/cyberglossary/message-authentication-code
https://www.fortinet.com/resources/cyberglossary/message-authentication-code
https://a2aproject.github.io/A2A/latest/topics/what-is-a2a/
https://auth0.com/docs/secure/tokens/json-web-tokens
https://www.cloudflare.com/learning/access-management/what-is-mutual-tls/
https://www.cloudflare.com/learning/access-management/what-is-mutual-tls/

4. OPERATIONS AND MAINTENANCE

Treatment Measures /
Controls

Related Threats / Risks

Related
component /
capabilities

Example Implementation

Reference / Resource

4.1

Validate inputs to the models
and agents.

Responsible Parties:
Al Practitioners,
Cybersecurity Practitioners

Direct promptinjection attacks to
the promptinterface from
adversarial inputs to the model.

Baseline: LLM

Implement input guardrails to detect
direct prompt injection or adversarial
attacks.

Implement input sanitisation measures
or limit inputs to conventional ASCII

How to implement LLM guardrails,
OpenAl

Guardrails, OpenAl Agents SDK
Guardrails Al

NeMo Guardrails, NVIDIA

. LLM Guard, Protect Al
characters only. e prompt-injection-defenses, tl;dr sec
. LLM Prompt Injection Prevention
Cheat Sheet, OWASP
Tools that lack input validation Baseline: Tools Enforce strict schema validation (e.g. ° Input Validation Cheat Sheet,
can be exploited through prompt JSON Schema, protobuf, Pedantic, OWASP
injection attacks. OpenAl Structured Outputs) and reject
non-conforming inputs into the system.
Escape or encode user inputs when
embedding into tool prompts or
commands.
Incorrect or manipulated Baseline: Validate agent instructions before ° High-Risk Al Systems Under the EU
instructions may invoke the Instructions passing on to the model, especially for Al Act
wrong tool/service and impact critical decision workflows. e Purple Llama, Meta Llama
downstream workflows.
Indirect prompt injection attacks Interaction: Implement input guardrails to detect . Input Validation Cheat Sheet,
via malicious website content or Internet & Search | indirect prompt injection. OWASP
files. Access. Implement escape filtering before . File Upload Cheat Sheet, OWASP
including web content or relevant files
Operational: File into prompts.
& Data Scan external files for undesired input or
Management instruction before passing on to memory
or models.
Generation of unrelated topic Interaction: Implement input multimodal (or text) . Purple Llama, Llama Guard, Meta
outputs, which may affect Multimodal guardrails to detect if the instruction is e Perspective API
integrity of model performance or | Understanding & | within the expected topic domain. e Content moderation, Anthropic
output. Generation Refuse to answer otherwise. e OpenAl Moderation API
e Cloud services:
Interaction:

Natural Language
Communication

- AWS Comprehend
- Azure Content Safety

43

https://cookbook.openai.com/examples/how_to_use_guardrails
https://cookbook.openai.com/examples/how_to_use_guardrails
https://openai.github.io/openai-agents-python/guardrails/
https://github.com/guardrails-ai/guardrails
https://docs.nvidia.com/nemo/guardrails/latest/index.html
https://github.com/protectai/llm-guard
https://github.com/tldrsec/prompt-injection-defenses
https://cheatsheetseries.owasp.org/cheatsheets/LLM_Prompt_Injection_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/LLM_Prompt_Injection_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
https://www.euaiact.com/blog/high-risk-ai-systems-under-the-eu-ai-act
https://www.euaiact.com/blog/high-risk-ai-systems-under-the-eu-ai-act
https://github.com/meta-llama/PurpleLlama
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/File_Upload_Cheat_Sheet.html
https://github.com/meta-llama/PurpleLlama
https://www.perspectiveapi.com/
https://docs.anthropic.com/en/docs/about-claude/use-case-guides/content-moderation
https://platform.openai.com/docs/guides/moderation

Treatment Measures /
Controls

Related Threats / Risks

Related
component/
capabilities

Example Implementation

Reference / Resource

Passing on prompt injection
attacks across agents throughout
the system(s).

Operational:
Agent
Communication

Sanitise messages before agents
process them - strip or escape
unexpected instruction-like content that
may have been injected (e.g. remove

“ignore”, “system”, or “from now on”).

Executing vulnerable or malicious
code.

Operational:
Code Execution

Sanitise all inputs for malicious code.

. DOMPurify

Exposure of personally
identifiable information from
retrieved content.

Operational: File
& Data
Management

Implement input guardrails to detect
personally identifiable information in the
content.

. Microsoft Presidio SDK
. spaCy, Explosion

4.2

Validate outputs from the
models and agents.

Responsible Parties:
Al Practitioners,
Cybersecurity Practitioners

Vulnerabilities in outputs across
the agentic workflow may be
exploited for malicious purposes
downstream, potentially
triggering cascading effects that
compromise interconnected
systems and dependencies.

Baseline: Agentic
Architecture

Insert validation checkpoints between
stages that verify expected output and
reject invalid output.

. How to implement LLM guardrails,

OpenAl
e Guardrails, OpenAl Agents SDK
e Guardrails Al
. NeMo Guardrails, NVIDIA
. LLM Guard, Protect Al

Disclosure of sensitive or
personally identifiable
information through unsanitised
outputs.

Interaction:
Multimodal
Understanding &
Generation

Interaction:
Natural Language
Communication

Implement output guardrails to detect
personally identifiable information in the
LLM's outputs before it reaches the user,
or contained within communications
before itis sent out.

Validate all links and attachments prior
to sending them to users.

Interaction:
Official
Communications
Sending malicious or undesired Interaction: Implement output safety text guardrails
content to recipients. Multimodal to detect if malicious or undesirable
Understanding & content is being generated, or contained
Generation within communications before it is sent
out.
Interaction:

Natural Language
Communication

Interaction:
Official
Communications

Validate all links and attachments prior
to sending them to users.

° Microsoft Presidio SDK
. spaCy, Explosion

44

https://github.com/cure53/DOMPurify
https://microsoft.github.io/presidio/
https://spacy.io/
https://cookbook.openai.com/examples/how_to_use_guardrails
https://cookbook.openai.com/examples/how_to_use_guardrails
https://openai.github.io/openai-agents-python/guardrails/
https://github.com/guardrails-ai/guardrails
https://docs.nvidia.com/nemo/guardrails/latest/index.html
https://github.com/protectai/llm-guard
https://microsoft.github.io/presidio/
https://spacy.io/

Treatment Measures /

Related Threats / Risks

Related

Example Implementation

Reference / Resource

Controls component/
capabilities
Allowing unauthorised actions Interaction: Apply fraud detection models or . Al fraud detection in banking, IBM
(e.g., transactions). Business heuristics to the agent's own decisions.

Transactions

Execution of insecure or
malicious code that are
generated by the LLM.

Operational:
Code Execution

Use code linters to screen for bad
practices, anti-patterns, unused
variables, or poor syntax.

Review all code and/or perform static
code analysis to detect potential security
vulnerabilities before execution.

Conduct CVE scanning and block
execution if any High or Critical CVEs are
detected.

Bandit (Python)

ESLint (JavaScript)

Semgrep (multi-language)
Purple Llama, CodeShield, Meta
Content Security Policy Cheat
Sheet, OWASP

Code Review Guide 2.0, OWASP

Output that will be renderedina
web Ul may be vulnerable to XSS.

Operational:
Code Execution

Sanitise output with libraries for
rendering in a web Ul. Test against
bypass.

XSS Filter Evasion Cheat Sheet,
OWASP

DOMPurify
sanitize-html

Generation of non-factual Cognitive: Have robust output validation . Input Validation Cheat Sheet,
content which can propagate Planning & Goal mechanisms, or multi-source validation. OWASP

downstream and may cause Management

unintended output or behaviour

that impacts integrity.

4.3 Implement continuous Model drift over time might cause | Baseline: LLM Continuously monitor and log outputs, . MLflow, Databricks
monitoring and logging of unexpected output or behaviour. triggering alerts when behaviour drifts e OpenlLMetry, traceloop
access, usage and execution from tested baselines. ° Helicone

Adversarial prompt attacks Baseline: LLM Log queries to detect for possible .

Responsible Parties:
Decision Makers, Al
Practitioners, Cybersecurity
Practitioners

against the system.

attacks or suspicious activity. Consider
the current privacy
regulations/guidelines when logging
inputs.

Langfuse

LangSmith, LangChain
Cloud provider tools:

- Azure Agent Monitoring

- AWS Bedrock Trace Events

45

https://www.ibm.com/think/topics/ai-fraud-detection-in-banking
https://bandit.readthedocs.io/en/latest/
https://github.com/eslint/eslint
https://github.com/semgrep/semgrep
https://github.com/meta-llama/PurpleLlama
https://cheatsheetseries.owasp.org/cheatsheets/Content_Security_Policy_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Content_Security_Policy_Cheat_Sheet.html
https://owasp.org/www-project-code-review-guide/
https://cheatsheetseries.owasp.org/cheatsheets/XSS_Filter_Evasion_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/XSS_Filter_Evasion_Cheat_Sheet.html
https://github.com/cure53/DOMPurify
https://www.npmjs.com/package/sanitize-html
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
https://github.com/mlflow/mlflow
https://github.com/traceloop/openllmetry
https://github.com/Helicone/helicone
https://langfuse.com/
https://www.langchain.com/langsmith

Treatment Measures /
Controls

Related Threats / Risks

Related
component/
capabilities

Example Implementation

Reference / Resource

Unauthorised users may exploit
tools that do not verify user
identity or permissions when
executing privileged actions.

Baseline: Tools

Conduct periodic audits to validate that
tool actions match the appropriate user
permissions.

Malicious actors exploit attack
surfaces that arise from using
tools that demand broader
permissions than necessary.

Baseline: Tools

Conduct periodic least-privilege reviews
and automated permission drift
detection.

Unauthorised tool usage.

Baseline: Tools

Monitor tool access and usage patterns.
Implement execution logs that track Al
tool calls for anomaly detection and
post-incident review.

. Best practices for event logging and
threat detection, Cloud Security
Alliance

e AWS Prescriptive Guidance:
Operationalizing agentic Al on AWS

Exploitation of authentication
mechanisms to impersonate
agents or human users.

Baseline: Roles
and Access
Controls

Deploy continuous monitoring to detect
fraud or impersonation attempts. Use
behavioural profiling, possibly involving a
second model, to detect deviations in Al
agent activity that may indicate identity
spoofing. Automate alerts to developers
when suspicious activities are detected.

. NIST SP 800-61 Rev. 3 Incident
Response Recommendations and
Considerations for Cybersecurity
Risk Management

° PagerDuty Incident Response
Documentation

e OWASP GenAl Security Project -
Multi-Agentic system Threat

Modelling Guide

Unauthorised or malicious use of
elevated privileged operations.

Baseline: Roles
and Access
Controls

Monitor role changes, and audit elevated
privilege operations.

. Best practices for event logging and
threat detection, Cloud Security
Alliance

In agentic workflows, early
mistakes or vulnerabilities can be
propagated and magnified
downstream.

Baseline: Agentic
Architecture

Apply circuit-breakers that freeze
propagation when anomalous behaviour
is detected, and implement human
authorisation for release.

Taint tracing may be used to identify key
locations in the workflow to apply circuit-
breakers.

. LangGraph interrupt, LangChain

e UserProxyAgent, AG2

. crewAl, Human-in-the-Loop
Workflows

. Agentic Autonomy Levels and
Security, NVIDIA

46

https://cloudsecurityalliance.org/resources/best-practices-for-event-logging-and-threat-detection
https://cloudsecurityalliance.org/resources/best-practices-for-event-logging-and-threat-detection
https://cloudsecurityalliance.org/resources/best-practices-for-event-logging-and-threat-detection
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-operationalizing-agentic-ai/introduction.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-operationalizing-agentic-ai/introduction.html
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-61r3.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-61r3.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-61r3.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-61r3.pdf
https://response.pagerduty.com/
https://response.pagerduty.com/
https://genai.owasp.org/resource/multi-agentic-system-threat-modeling-guide-v1-0/
https://genai.owasp.org/resource/multi-agentic-system-threat-modeling-guide-v1-0/
https://genai.owasp.org/resource/multi-agentic-system-threat-modeling-guide-v1-0/
https://cloudsecurityalliance.org/resources/best-practices-for-event-logging-and-threat-detection
https://cloudsecurityalliance.org/resources/best-practices-for-event-logging-and-threat-detection
https://cloudsecurityalliance.org/resources/best-practices-for-event-logging-and-threat-detection
https://blog.langchain.com/making-it-easier-to-build-human-in-the-loop-agents-with-interrupt/
https://microsoft.github.io/autogen-for-net/articles/Create-a-user-proxy-agent.html
https://docs.crewai.com/en/learn/human-in-the-loop
https://docs.crewai.com/en/learn/human-in-the-loop
https://developer.nvidia.com/blog/agentic-autonomy-levels-and-security/
https://developer.nvidia.com/blog/agentic-autonomy-levels-and-security/

Treatment Measures /
Controls

Related Threats / Risks

Related
component/
capabilities

Example Implementation

Reference / Resource

More complex agentic
architectures may make it
difficult to fully reconstruct
decision processes across
multiple agents, for the purpose
of incident response, or triage.

Baseline: Agentic
Architecture

Implement end-to-end distributed
tracing with unique request IDs across
all agents and tool calls.

Implement immutable, tamper-evident
audit logs that capture prompts,
responses, and tool invocations.

° A Novel Zero-Trust Identity
Framework for Agentic Al:
Decentralized Authentication and
Fine-Grained Access Control

. Short-lived API tokens:

- What Are Refresh Tokens and How
to Use Them Securely, authO
- JSON Web Tokens, auth0

e Temporary cloud credentials:

- Use temporary credentials with
AWS resources, AWS

- About IAM authentication, Google
Cloud

Lack of monitoring results in
delayed detection of agent
failures and downstream risks.

Baseline: System
Workflows &
Autonomy

Implement real-time monitoring of agent
status, actions, and performance
metrics, paired with automated alerting
mechanisms that notify operators of
anomalies, errors, or inactivity.

Lack of traceability inhibit proper
audit of decision-making paths in
the event of failures.

Baseline: System
Workflows &
Autonomy

Record comprehensive logs of agent
actions, inputs, outputs, and inter-agent
communications, tagged with unique
trace identifiers to reconstruct full
decision-making paths.

If greater integrity is needed, Al-
generated logs can be cryptographically
signed and immutable.

Agents execute malicious or

Cognitive: Agent

Log all task assignments by the agent to

unauthorised actions by Delegation other agents.

exploiting reasoning. Log all requests leading up to the
execution of task.

Allowing unauthorised Interaction: Log all requests leading up to the

transactions Business transaction.

Transactions

Exposure of personally
identifiable or sensitive data from

Operational: File
& Data

Log all database queries in production.

databases or files Management

Misconfiguring system resources, | Operational: Ensure logging of system health metrics
compromising system integrity System and automated alerts to the developer
and availability Management team if any metrics are abnormal.

. Best practices for event logging and
threat detection, Cloud Security
Alliance

e AWS Prescriptive Guidance:
Operationalizing agentic Al on AWS

47

https://arxiv.org/abs/2505.19301
https://arxiv.org/abs/2505.19301
https://arxiv.org/abs/2505.19301
https://arxiv.org/abs/2505.19301
https://auth0.com/blog/refresh-tokens-what-are-they-and-when-to-use-them/
https://auth0.com/blog/refresh-tokens-what-are-they-and-when-to-use-them/
https://auth0.com/docs/secure/tokens/json-web-tokens
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://cloud.google.com/memorystore/docs/valkey/about-iam-auth
https://cloud.google.com/memorystore/docs/valkey/about-iam-auth
https://cloudsecurityalliance.org/resources/best-practices-for-event-logging-and-threat-detection
https://cloudsecurityalliance.org/resources/best-practices-for-event-logging-and-threat-detection
https://cloudsecurityalliance.org/resources/best-practices-for-event-logging-and-threat-detection
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-operationalizing-agentic-ai/introduction.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-operationalizing-agentic-ai/introduction.html

Treatment Measures /
Controls

Related Threats / Risks

Related
component/
capabilities

Example Implementation

Reference / Resource

Overwhelming the system with

Operational:

Log all queries from the agent to external

inefficient or repeated requests System systems, and check for repeated
Management requests.
4.4 Ensure adequate human Deviation from the user's Baseline: LLM, Ensure human approval for any high-risk | e LLM Prompt Injection Prevention
oversight (human-in-the-loop) | instructions when performing Cognitive: cases or irreversible actions. Cheat Sheet, OWASP
to verify model or agent high-risk actions. Planning & Goal e High-Risk Al Systems Under the EU
output, when viable or Allowing of unauthorised actions. | Management Al Act
appropriate. Generation of non-factual Baseline: LLM Ensure secondary validation of Al- e LangGraph interrupt, LangChain
content or incorrect instructions, generated knowledge before it is used in e UserProxyAgent, AG2
Responsible Parties: which can propagate critical decision-making processes. e crewAl, Human-in-the-Loop
Decision Makers, Al downstream and have an impact Workflows
Practitioners on decision making. e Implement human-in-the-loop
Allowing unauthorised actions Interaction: Ensure human validation for high-risk confirmation with Amazon Bedrock
(e.g., transactions). Business transactions.

Transactions

Agents
. Bridging Minds and Machines:

Loss of data integrity from
overwriting or deleting database
tables orfiles.

Operational: File
& Data
Management

Ensure user confirmation for any
changes to the database, table, or files.

Agents with Human-in-the-Loop —
Frontier Research, Real-World
Impact, and Tomorrow’s

Execution of insecure or
malicious code may cause the

system to become compromised.

Operational:
Code Execution

Implement execution control policies
that flag Al-generated code with elevated
privileges for manual review.

Possibilities, CAMEL-AI

Exploitation of human cognitive Cognitive: Apply hierarchical Al-human
limits for systems that requires Planning & Goal collaboration where low-risk decisions
high human oversight. Management are automated, and human intervention
is required for high-risk decisions.
4.5 Establish a vulnerability Malicious code execution and Interaction: Provide channels for users to clarify ° Responsible Vulnerability
disclosure process data disclosure by leveraging Official communications or give feedback on Disclosure Policy, Cyber Security

Responsible Parties:
Decision Makers, Al
Practitioners, Cybersecurity
Practitioners

undiscovered vulnerabilities
existing within system.

Communications

security and usage.

Agency
. UK NCSC Vulnerability Disclosure
Toolkit

48

https://cheatsheetseries.owasp.org/cheatsheets/LLM_Prompt_Injection_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/LLM_Prompt_Injection_Prevention_Cheat_Sheet.html
https://www.euaiact.com/blog/high-risk-ai-systems-under-the-eu-ai-act
https://www.euaiact.com/blog/high-risk-ai-systems-under-the-eu-ai-act
https://blog.langchain.com/making-it-easier-to-build-human-in-the-loop-agents-with-interrupt/
https://microsoft.github.io/autogen-for-net/articles/Create-a-user-proxy-agent.html
https://docs.crewai.com/en/learn/human-in-the-loop
https://docs.crewai.com/en/learn/human-in-the-loop
https://aws.amazon.com/blogs/machine-learning/implement-human-in-the-loop-confirmation-with-amazon-bedrock-agents/
https://aws.amazon.com/blogs/machine-learning/implement-human-in-the-loop-confirmation-with-amazon-bedrock-agents/
https://aws.amazon.com/blogs/machine-learning/implement-human-in-the-loop-confirmation-with-amazon-bedrock-agents/
https://www.camel-ai.org/blogs/human-in-the-loop-ai-camel-integration
https://www.camel-ai.org/blogs/human-in-the-loop-ai-camel-integration
https://www.camel-ai.org/blogs/human-in-the-loop-ai-camel-integration
https://www.camel-ai.org/blogs/human-in-the-loop-ai-camel-integration
https://www.camel-ai.org/blogs/human-in-the-loop-ai-camel-integration
https://isomer-user-content.by.gov.sg/36/4aa60609-4481-4e7c-92eb-2728247a084f/responsible-vulnerability-disclosure-policy.pdf
https://isomer-user-content.by.gov.sg/36/4aa60609-4481-4e7c-92eb-2728247a084f/responsible-vulnerability-disclosure-policy.pdf
https://isomer-user-content.by.gov.sg/36/4aa60609-4481-4e7c-92eb-2728247a084f/responsible-vulnerability-disclosure-policy.pdf
https://www.ncsc.gov.uk/information/vulnerability-disclosure-toolkit
https://www.ncsc.gov.uk/information/vulnerability-disclosure-toolkit

0
>
[55]
=
(2
>
(2}
<
[}
=
o
2
O
L
(2}
Z
O
=
2
[a)
P4
[51]
[a)
[a)
<
4
<C
<
e
=
Z
L
O
<
)
Z
o
2
O
L
(%)

9. USE CASE EXAMPLE

5.1. Case Study 1: Web application
development system
(SaaS implementation)

This case study highlights a software as a service (SaaS) implementation of an agentic Al
system that is capable of autonomously developing web applications. This system is an
autonomy level 3 system with a cyclic workflow. Risks to this system include sensitive data
disclosure of Company A’s data, or generation of malicious code that could cause

unwanted behaviour.

Company A has engaged a third-party vendor, Vendor V, to help implement an agentic Al
system for staff to develop and deploy simple web applications through natural language
prompts. This Software as a Service (SaaS) solution is known as VibeCoder.

To generate a functional web app, the user simply specifies the application’s key features
and design. VibeCoder then proceeds to generate the code and text for the web application,
run and create the required front-end and back-end systems locally, and render the website
for the user to preview. The user can continue to iterate the design of the web app by input of
prompts for VibeCoder to follow, and regenerate the web app.

The system architecture for VibeCoder is as follows in Figure 11.

Figure 11: Simplified system architecture of VibeCoder

¢

input output
from o
user user
| | VibeCoder

D .npu
Application

FI ®
Container - Multimodal
Tool Calling LLM
pu—

o

&

F

A4
Company A
Database

Web Content

The user interacts with VibeCoder through an application interface, which passes the natural
language prompts to the agent, as well as displays the generated output. VibeCoder is also
given access to Company A’s database through a data ingestion endpoint connected to
Company A’s file systems. This data is used by VibeCoder to help contextualise and generate
relevant features about Company A when developing the web app.

As VibeCoder is a SaaS solution, Company A has no visibility of the architecture within the
system. They can only see what goes into VibeCoder, and what it generates. However,
Vendor V has given Company A some details about VibeCoder.

1. VibeCoder’s “brain” is a multimodal LLM, which is able to take in and generate text, code,
images, and video.

2. Whenever a user begins a new session, VibeCoder will spin up a container with the
necessary scripting tools and environments for it to complete its task.

3. VibeCoder has access to the internet via a web search API to retrieve additional data or
dependencies from the internet.

Vendor V did not share any details about securing the VibeCoder system. Company A, being
concerned about security, decided to take steps to secure the implementation of VibeCoder
into their enterprise system.

0
>
[55]
=
(2
>
(2}
<
[}
=
o
2
O
L
(2}
Z
O
=
2
[a)
P4
[51]
[a)
[a)
<
4
<C
<
e
=
Z
L
O
<
)
Z
o
2
O
L
(%)

0
>
[55]
=
(2
>
(2}
<
[}
=
o
2
O
L
(2}
Z
O
=
2
[a)
P4
[51]
[a)
[a)
<
4
<C
<
e
=
Z
L
O
<
)
Z
o
2
O
L
(%)

Risk Assessment and Threat Modelling

Company A performed a risk assessment to identify and address potential risks on the
confidentiality, integrity and availability of the system. If the risks are not mitigated, there is
potential for an attacker to exploit vulnerabilities and cause VibeCoder to be compromised.
This could result in exposure or loss of sensitive data or personally identifiable information.
This could impact Company A’s reputation.

1. Map Workflows and Assess Autonomy Level

First, Company A mapped the workflow of VibeCoder to get a better visibility on how to
assess its autonomy level. Knowing the input required and the steps taken by VibeCoder,
Company A can map the workflow for generating a web app. The workflow diagram is shown
in Figure 12.

Figure 12: Workflow Diagram of VibeCoder

input
(natural language) output o
o
Web App

Application

Company A

Database

Company A assessed VibeCoder to be an autonomy level 3 system, as the system is given
the ability to determine how to call tools or perform additional inference. The user is able to
iterate multiple generations of web apps through multiple prompts with VibeCoder, with
adjustments at every iteration.

2. Threat Modelling to Identify Areas of Interest

Based on these workflows, Company A performed taint tracing to identify points of weakness
in the workflow. This will inform Company A on locations in the system to prioritise
implementing the mitigations. Figure 13 below shows the identified potential source of
untrusted data as the retrieval of web content and the company database.

Figure 13: Taint Tracing of Workflow for VibeCoder

input input
(natural language) output o (natural language) output N
» ﬁ r» »

Web App Web App
Application
@ > @
a—
LLM Container LLM Container
A A
@ - @
-~ -~
Web Content Web Content
e —
SRR N
Company A Company A
Database Database
o S . S

0
>
[55]
=
(2
>
(2}
<
[}
=
o
2
O
L
(2}
Z
O
=
2
[a)
P4
[51]
[a)
[a)
<
4
<
<
e
=
Z
L
O
<
)
Z
o
2
O
L
(%)

3. Identify Risks and Controls

As part of the threat modelling, Company A had identified possible threat scenarios against
the VibeCoder system, and assessed the potential impact, likelihood, and overall risk faced
by the system. Once the risks had been identified, Company A prioritised addressing higher
risk scenarios, and implemented mitigating controls found in Chapter 4.3 TREATMENT
MEASURES / CONTROLS FOR AGENTIC Al SYSTEMS of this document. Table 5 shows an
illustration of risk assessment done, and is hot meant to be exhaustive.

0
>
[55]
=
(2
>
(2}
<
[}
=
o
2
O
L
(2}
Z
O
=
2
[a)
P4
[51]
[a)
[a)
<
4
<C
<
e
=
Z
L
O
<
)
Z
o
2
O
L
(%)

Table 5: Risk Assessment of VibeCoder

information, which
can be exposed it the
app is pushed to live
production without
verification or checks.

Capability:
Operational: File &
Data Management

could be stored in
the company
database, and
retrieved by the
model.

However, the user
of the system
should be an
employee of the
company who has
access to relevant
company data
with sufficient

not retrieve
sensitive data.

Residual Risk
Level after
controls:
Low

(Low x Low)

Threat Scenario Impact Likelihood Risk Levels Mitigating
controls

Web app thatis Confidentiality: Medium Initial Risk Whitelist only files

generated may Medium Depending on the Level: which are required

contain sensitive Sensitive company | promptinput by Medium for the task. Do

company data or data or personally | the user, the (Medium x not grant access

personally identifiable | identifiable data model may or may | Medium) to files known to

host private or
sensitive
information.
Implement output
guardrails that
detect for
personally
identifiable
information or
sensitive company
data.

server and can cause
sensitive information
leakage.

Capability:
Operational: File &
Data Management,
Code Execution

information, there
is potential for
data leakage if
given access to
VibeCoder.

obtained from the
internet, or from a
compromised file
within Company
A’s database.

Residual Risk
Level after
controls:
Low

(Low x Low)

clearance.
Indirect prompt Confidentiality: Medium Initial Risk Whitelist only files
injection may allow High This indirect Level: which are required
the web app to If Company A’s prompt injection Medium-High for the task.
generate malicious database contains | can be introduced (High x
clickable links within sensitive or in a variety of Medium) Implement
the output, which personally ways. Contained granular
leads to an attacker’s identifiable in resource permission

controls, and
dynamic access
validation.

Agents accessing
sensitive data
should operate
under the principle
of least privilege in
time.

0
>
[55]
=
(2
>
(2}
<
[}
=
o
2
O
L
(2}
Z
O
=
2
[a)
P4
[51]
[a)
[a)
<
4
<C
<
e
=
Z
L
O
<
)
Z
o
2
O
L
(%)

Threat Scenarios Impact Likelihood Risk Levels Mitigating
controls

Direct prompt Confidentiality, Low Initial Risk Implement input

injection by the user Integrity, VibeCoder should Level: guardrails to

may cause VibeCoder | Availability: only be accessible | Medium detect direct

to perform unintended | High by Company A (High x Low) promptinjection.

actions other than staff. A malicious

web app Unintended user would likely Escape or encode

development, such as

actions can have a

be aninsider

Residual Risk

user inputs when

overwriting of wide range of threat. Level after embedding into
database files or impacts. controls: commands.
executing malicious Overwriting of Low
scripts. database files can (Low x Low) Create a whitelist
impact integrity, of commands that
Capabilities: while execution of agents are allowed
Operational: File & malicious scripts torun.
Data Management, can cause
Code Execution sensitive Implement
information granular
leakage. permission
controls, and
dynamic access
validation.
Indirect prompt Medium Initial Risk Implement input
injection can be Itis possible that Level guardrails to
introduced when there could be Medium detect indirect
online resources are hidden prompt (Medium x promptinjection.
retrieved by injections Medium)
VibeCoder from the contained within Implement escape
internet. These online resources. filtering before
indirect prompt Residual Risk including web
injections may also Level after content or relevant
cause unintended controls: files into prompts.
actions to be taken by Low
the agentic Al system. (Low x Low) No write access to
tables in the
Capability: database.
Interaction: Internet &
Search Access
Documents in the Integrity, Low Initial Risk Sanitise messages
database may Availability: First, a benign file Level: or files before
unintentionally have Low containing Low agents process

content that is
interpreted by the
model to be
instructions to be
carried out. This might
cause VibeCoder to
perform an action
described within the
document, but not
intended to by the
user. These are
different from indirect
promptinjection in
that they are not
intentionally added.

Capability:
Operational: File &
Data Management

Instructions from a
benign file are
likely to be non-
malicious in
nature, and would
probably only
cause a minor bug
or inconvenience.

instruction-like
text has to be
added to
CompanyA’s
database. Then,
VibeCoder would
have to recognise
that the document
is relevant and
retrieve it. Finally,
the contents of the
file must be
interpreted as
instruction. The
chance for all to
happen is possible
but not zero.

(Low x Low)

Residual Risk
Level after
controls:
Low

(Low x Low)

them - strip or
escape
unexpected
instruction-like
content that may
have been injected
(e.g. remove
“ignore”,
“system”, or “from
now on”, etc.)

Additional Controls

As VibeCoder is a SaaS implementation, Company A is only able to apply controls at the
endpoint interfaces of the agentic Al system. Thus, in addition to the above mitigations,
Company A identified additional risks across the development lifecycle, and controls that it
would like to see be implemented in VibeCoder. This would guide them in their discussions
for a Service Level Agreement (SLA) with Vendor V.

0
>
[55]
=
(2
>
(2}
<
[}
=
o
2
O
L
(2}
Z
O
=
2
[a)
P4
[51]
[a)
[a)
<
4
<C
<
e
=
Z
L
O
<
)
Z
o
2
O
L
(%)

1. DESIGN AND PLANNING

relevant industry
standards/best
practices.

practices may lead to
insufficient, inefficient
or ineffective
mitigations.

Tainted componentsin
an agentic Al system
can have downstream
impact along the
workflow.

Treatment Measures | Related Threats / Related Implementation
/ Controls Risks component/
capabilities
1.1 | Conduct arisk Failure to comply with Baseline As part of a risk assessment and
assessmentin industry threat modelling, perform taint
accordance with the standards/best tracing across workflows

throughout the agentic Al system.
Taint tracing is especially
important for agentic Al systems
of higher autonomy levels (i.e.
levels 2 and 3).

0
>
[55]
=
(2
>
(2}
<
[}
=
o
2
O
L
(2}
Z
O
=
2
[a)
P4
[51]
[a)
[a)
<
4
<C
<
e
=
Z
L
O
<
)
Z
o
2
O
L
(%)

2. DEVELOPMENT

Treatment Measures / Related Threats / Related Implementation
Controls Risks component /
capabilities
2.1 Supply Chain Security: Introduction of bugs, Baseline Check/ensure suppliers
Ensure the following vulnerabilities, adhere to policy and the
components are from unwanted or malicious equivalent security
trusted sources: content, poisoned standards as your
e data, models or rogue agents organisation. This could
° models, from third-party be done by establishing a
e agents, systems. Service Level Agreement
e software libraries, (SLA) with the vendor.
e developertools and Vulnerabilities in third- | Baseline Integrate software
applications, party libraries and composition analysis
e packages from MCP dependencies used by (SCA) tools or use
servers. the agent package managers.
Regularly scan
dependencies and
update libraries with
known vulnerabilities.
Poorly aligned LLMs Baseline: LLM Reviewed the LLM's
may pursue objectives model card for potential
which violate security alignment issues before
principles. using the LLM.
Poisoned models may Baseline: LLM Did not use LLMs from
introduce hidden unknown or untrusted
backdoors in the sources.
system.
Scanned model to detect
for potential backdoors or
RCE scripts.
Poorly implemented Baseline: Tools Did not use tools which
tools may not correctly do notimplement robust
verify user identity or authentication protocols.
permissions when
executing privileged
actions.
Rogue tools that mimic | Baseline: Tools Did not use tools from
legitimate ones can unknown or untrusted
contain hidden sources.
malicious code that
executes when loaded.
Indirect prompt Interaction: Use structured retrieval
injection attacks via Internet & Search | APlIs for searching the
malicious website Access web rather than through
content web scraping.
Returning unreliable Interaction: Prioritise results from
information from Internet & Search | verified, high-quality
websites, causing Access domains.
downstream integrity
impact on workflows
Supply chain attacks Interaction: Other | Enforce zero-trustinput
Programmatic handling and validated all
Interfaces data flows
2.2 Consider model LLMs with weak Baseline: LLM Prioritised LLMs with

hardening if appropriate.

performance in
instruction following
might produce
unexpected output,

stronger performance in
instruction following or
related capabilities to the
task. Used benchmarking

0
>
[55]
=
(2
>
(2}
<
[}
=
o
2
O
L
(2}
Z
O
=
2
[a)
P4
[51]
[a)
[a)
<
4
<C
<
E
=
Z
L
O
<
)
Z
o
2
O
L
(%)

leading to unwanted
behaviour.

results to gauge
suitability.

Al agents execute
disallowed tasks for
malicious purposes.

Baseline: LLM

Trained model to
recognise and refuse
disallowed tasks.

2.3 Consider implementing Introduction of bugs, Baseline Adopted Security by
techniques to vulnerabilities through Design.
strengthen/harden the insecure coding Applied software
system apart from practices or design development lifecycle
strengthening the model (SDLC) process.
itself. Used software

development tools to
check for insecure coding
practices.
Implemented zero trust
principles in system
design.

Increased Baseline: Implemented robust

susceptibility to Instruction system prompt design.

promptinjection

attacks and risk of

executing unwanted

tasks.

Insecure coding Baseline: Agentic | Adopted secure coding

practices leading to Architecture practices.

vulnerabilities in the

system

2.4 Identify, Track and Loss of data integrity Baseline Document the data,

Protect Al system assets such as through codes, test cases,
unauthorised changes Coghnitive: Tool models and agents,
to data, model, agents Use including any changes
or system. made and by whom.
Lack of proper Use model cards, Agent
documentation of cards, Data cards, and
resources may result in Software Bill of Materials
the wrong tool being (SBOMs).
used, causing
unwanted behaviour or
output.
Agents may Baseline: Memory | Encrypt memory at rest
inadvertently store and restricted access via
sensitive user or fine-grained access
organisational data controls and audit logs.
from prior interactions,
resulting in data
privacy risks.

2.5 Have regular backups in Manipulation of Baseline: Memory | Implement Al-generated
the event of memory systems and memory snapshots for
compromise. context, causing forensic analysis and

flawed decision rollback if anomalies are

making and detected.

unauthorised

operations.

Execution of insecure Operational: Ensure proper versioning

or malicious code. Code Execution control of code to allow
rollbacks.

2.6 Implement appropriate Unauthorised tool Baseline: Tools Enforce strict tool access

authentication,
authorisation and access
controls to APIs, models,
data, logs, tools and the

usage.

verification.

Unauthorised actors
can impersonate

Baseline: Roles &
Access Controls

Maintain trusted registry
of agents and
authenticate agents using

0
>
[55]
=
(2
>
(2}
<
[}
=
o
2
O
L
(2}
Z
O
=
2
[a)
P4
[51]
[a)
[a)
<
4
<C
<
e
=
Z
L
O
<
)
Z
o
2
O
L
(%)

environments that they
arein.

agents and gain access
to restricted resources.

strong, verifiable
credentials.

Agents may gain
unauthorised access
to restricted resources
by exploiting
misconfigured or overly
permissive roles.

Baseline: Roles &
Access Controls

Apply strict access
controls and validated
agentroles for requests.
Ensure fine-grained,
scoped tokens and
credentials.

Exploitation of

Baseline: Roles

Implement granular

vulnerabilities in and Access permission controls, and
permission Controls dynamic access
management. validation.

Exfiltration of sensitive | Operational: Implement a whitelist
data Agent approach for outward

Communication

network access,
including APl requests

Executing vulnerable or
malicious code

Operational:
Code Execution

Implement a whitelist
approach for inward
network access

2.7 Implement controls to Abuse of agent- Baseline: Tools Establish clear
limit what models or accessible tools to operational boundaries to
agents can access and execute unintended prevent misuse of tools.
generate. actions. Set limits on what agents
can modify through
appropriate guardrails.
Excessive agent Baseline: Roles Do not grant admin
privileges to perform and Access privileges to agents.
unauthorised actions. Controls
Compromised agents Baseline: Roles Restrict Al agent
act outside their and Access autonomy using policy
operational Controls constraints.
boundaries. Scope agent privileges
strictly only to what is
necessary to run the
tasks.
Do not allow agents to
modify privileges.
Assigning tasks Cognitive: Agent Apply guardrails to limit
incorrectly to other Delegation the scope of tasks that
agents can be assigned to
specialised agents
Executing vulnerable or | Operational: Create a whitelist of
malicious code. Code Execution commands that agents
are allowed to run
autonomously and deny
execution of all other
commands that are not
whitelisted.
Misconfiguring system Operational: Only grant agents the
resources, System privilege to modify
compromising system Management system resources for
integrity and completion of tasks. Set
availability minimum and maximum
limits to what can be
modified.
2.8 Apply the principle of Agents may gain Baseline: Roles & | Apply principle of least

least privilege. Ensuring
configurations are
secure by default.

unauthorised access
to restricted resources
by exploiting
misconfigured or overly
permissive roles.

Access Controls

privilege when
configuring all agent and
delegation roles.

0
>
[55]
=
(2
>
(2}
<
[}
=
o
2
O
L
(2}
Z
O
=
2
[a)
P4
[51]
[a)
[a)
<
4
<C
<
e
=
Z
L
O
<
)
Z
o
2
O
L
(%)

Privileged execution of
untrusted or malicious
code

Operational:
Code Execution

Scope execution
privileges strictly only to
what is necessary.

Do not grand admin or
sudo privilege by default.
Blocked all inward and
outward network access
by default.

Escalation of the
agent's own privileges
may allow it to be used
to access restricted
resources.

Operational:
System
Management

Scope system privileges
strictly only to what is
necessary.

Do not grant admin
privileges to agents.

Do not allow agents to
modify privileges.

2.9 Implement segregation Rogue tools that mimic | Baseline: Tools Tested third-party tools in
of environments and legitimate ones can hardened sandboxes with
network segmentation. contain hidden syscall/network egress

malicious code that restrictions before using

executes when loaded. them in production
environments.

Promptinjection Baseline: Agentic | Decouple data

attacks and indirect Architecture processing flow from

data manipulation. control flow through
runtime security
architecture

Execution of insecure Operational: Sandbox the execution of

or malicious scripts Code Execution Al generated scripts.

2.10 | Implement model self- Incomplete or unclear Baseline: Ask the agent to
reflection before making instructions may Instructions summarise its
decisions, where compel models to understanding and
applicable attempt tofillin requested clarification

missing constraints, before proceeding to the

resulting in incorrect or next step.

unwanted actions

being executed.

Deviation from the Coghnitive: Prompt the agent to self-

user's instructions. Planning & Goal reflect on the adherence

Management of the plan to the user's

instructions

Incorrect assignment Coghnitive: Prompt the agent to self-

of tasks to other Planning & Goal reflect and assess the

agents. Management suitability of tasks
delegated to agents.

Unintended pursuit or Coghnitive: Log the output of self-

prioritisation of other Reasoning & reflection by the agentin

goals, resulting in Problem-Solving the console for the user

malicious or deceptive to evaluate and verify.

behaviour.

2.11 | Implement controls to Agents may mistakenly | Baseline: Memory | Schedule periodic

reduce the likelihood of
hallucination.

store glitches and
hallucinations into
memory, resulting in
compounding errors
when incorrect
information is retrieved
for decisions or
actions.

memory reconciliation.

Generating non-factual
or hallucinated content
which can propagate
downstream and

Interaction:
Natural Language
Communication

Conduct testing to
measure hallucination
and factuality rates.

0
>
[55]
=
(2
>
(2}
<
[}
=
o
2
O
L
(2}
Z
O
=
2
[a)
P4
[51]
[a)
[a)
<
4
<
<
e
=
Z
L
O
<
)
Z
o
2
O
L
(%)

cause compounding
errors.

Interaction:
Multimodal
Understanding &
Generation

0
>
[55]
=
(2
>
(2}
<
[}
=
o
2
O
L
(2}
Z
O
=
2
[a)
P4
[51]
[a)
[a)
<
4
<C
<
e
=
Z
L
O
<
)
Z
o
2
O
L
(%)

3. DEPLOYMENT

Treatment Related Threats / Risks Related Implementation
Measures / component /
Controls capabilities
3.1 | Ensure (Distributed) denial of service Baseline: Apply rate limits on the
availability on agents. Agentic number of concurrent queries
controls are in Architecture to agents.
place to mitigate Degradation of computational | Baseline: Deploy resource management
disruption or or service capability of the System controls, implemented
failure of Al system. Workflows & adaptive scaling mechanisms
services Autonomy and monitored system load to
detect and mitigate overload
attempts.
Implement rate limits on high-
frequency task requests per
agent session.
Slow or inefficient responses Cognitive: Enforce time or token limits
from being stuckina Reasoning & for reasoning.
reasoning loop. Problem
Solving Adjust short-term and long-
term memory options.
Compromising database Operational: Limit the number of
availability through excessive File & Data concurrent queries to the
queries. Management database from agents.
Overconsumption of compute | Operational: Implement monitoring of code
resources. Code runtime and memory
Execution consumption.
3.2 | Conduct security | Agents may contain Baseline: LLM Implement behavioural
testing underlying problems which testing of agents with
can cause unexpected benchmark datasets to
behaviour or logical errors. determine performance
metrics.
Execute simulations in
regulated environments to
analyse agents' behaviour.
Al may engage in specification | Baseline: Conduct adversarial

gaming, where it maximises
the goal by exploiting
loopholes, without achieving
the intended task.

Instructions

evaluation to discover
specification gaming
behaviour. Iterate on system
prompt design, have more
robust reward design, and
added constraints.

Incomplete or unclear
instructions may compel
models to attempt to fillin
missing constraints, resulting
in incorrect or unwanted
actions being executed.

Baseline:
Instructions

Test the efficacy of system
prompts with benchmarks.

Compromised agents may
impact downstream decision
making.

Coghnitive:
Reasoning &
Problem
Solving

Implement regular Al red
teaming of agents to check for
potential vulnerabilities or
compromise.

0
>
[55]
=
(2
>
(2}
<
[}
=
o
2
O
L
(2}
Z
O
=
2
[a)
P4
[51]
[a)
[a)
<
4
<C
<
e
=
Z
L
O
<
)
Z
o
2
O
L
(%)

4. OPERATIONS AND MAINTENANCE

from the models
and agents.

early mistakes or
vulnerabilities can be
propagated and

Architecture

Treatment Related Threats / Related Implementation
Measures / Risks component /
Controls capabilities
4.1 | Validate inputs to Direct prompt Baseline: LLM Implement input guardrails to
the models and injection attacks to the detect direct promptinjection
agents. promptinterface. or adversarial attacks.
LLMs with insecure Baseline: LLM Implement input sanitisation
input validation are measures or limit inputs to
more susceptible to conventional ASCII characters
promptinjection only.
attacks and
jailbreaking attempts.
Tools that do not Baseline: Tools Enforce strict schema
properly sanitise or validation and rejected
validate inputs can be non-conforming inputs into
exploited through the system.
prompt injection
attacks. Escape or encode user inputs
when embedding into tool
prompts or commands.
Incorrect or Baseline: Validate agent instructions
manipulated Instructions before passing on to the
instructions may model.
invoke the wrong
tool/service and
impact downstream
workflows.
Indirect prompt Interaction: Internet | Implement input guardrails to
injection attacks via & Search Access. detect indirect prompt
malicious website injection.
content or files. Operational: File & Implement escape filtering
Data Management before including web content
or relevant files into prompts.
Executing vulnerable Operational: Code Sanitise all inputs
or malicious code Execution
Exposure of personally | Operational: File & Implement input guardrails to
identifiable Data Management detect personally identifiable
information from information in the content.
retrieved content.
Indirect prompt Operational: File & Scan external files for
injection attacks via Data Management undesired input or instruction
content of a malicious before passing on to memory
file. or models.
4.2 | Validate outputs In agentic workflows, Baseline: Agentic Insert validation checkpoints

between stages that verify
expected output and reject
invalid output.

maghnified

downstream.

Exposure of personally | Interaction: Implement output guardrails

identifiable Multimodal to detect personally

information. Understanding & identifiable information in the
Generation LLM's outputs before it

reaches the user.

Sending malicious or Interaction: Implement output safety text

undesired content to Multimodal guardrails to detect if

recipients Understanding & malicious or undesirable
Generation content is being generated.

0
>
[55]
=
(2
>
(2}
<
[}
=
o
2
O
L
(2}
Z
O
=
2
[a)
P4
[51]
[a)
[a)
<
4
<C
<
e
=
Z
L
O
<
)
Z
o
2
O
L
(%)

Execution of insecure
or malicious code.

Operational: Code
Execution

Used code linters to screen for
bad practices, anti-patterns,
unused variables, or poor
syntax.

Review all code and
performed static code
analysis to detect potential
security vulnerabilities before
execution.

Conduct CVE scanning.

Output that will be

Operational: Code

Sanitise output with libraries

rendered in a web Ul Execution forrendering in a web Ul.
may be vulnerable to Tested against bypass.
XSS.

4.3 | Implement Model drift over time Baseline: LLM Implement continuous
continuous might cause monitoring and log outputs,
monitoring and unexpected output or triggering alerts when
logging of behaviour. behaviour drifts from tested
access, usage and baselines.
execution Adversarial prompt Baseline: LLM Logging of queries to detect

attacks against the
system.

for possible attacks or
suspicious activity.

Insecure tools may not
verify user identity or
permissions when
executing privileged
actions.

Baseline: Tools

Conduct periodic audits to
validate that tool actions
match the appropriate user
permissions.

Tools that demand
broader permissions
than necessary create
attack surfaces for
malicious actors to
exploit.

Baseline: Tools

Conduct periodic
least-privilege reviews and
automated permission drift
detection.

Unauthorised tool
usage.

Baseline: Tools

Implement monitoring of tool
access and usage patterns.
Implement execution logs that
track Al tool calls for anomaly
detection and post-incident
review.

Exploitation of
authentication
mechanisms to
impersonate agents or
human users.

Baseline: Roles and
Access Controls

Deploy continuous monitoring
to detect fraud or
impersonation attempts.
Automate alerts to developers
when suspicious activities are
detected.

Unauthorised or
malicious use of
elevated privileged
operations.

Baseline: Roles and
Access Controls

Implement monitoring of role
changes, and audit elevated
privilege operations.

In agentic workflows,
early mistakes or
vulnerabilities can be
propagated and
magnified
downstream.

Baseline: Agentic
Architecture

Apply circuit-breakers that
freeze propagation when
anomalous behaviour is
detected. Use taint tracing to
identify key locations in the
workflow to apply circuit-
breakers.

More complex agentic
architectures may
make it difficult to fully
reconstruct decision

Baseline: Agentic
Architecture

Implement end-to-end
distributed tracing with unique
request IDs across all agents
and tool calls.

0
>
[55]
=
(2
>
(2}
<
[}
=
o
2
O
L
(2}
Z
O
=
2
[a)
P4
[51]
[a)
[a)
<
4
<C
<
e
=
Z
L
O
<
)
Z
o
2
O
L
(%)

processes across
multiple agents.

Implement immutable,
tamper-evident audit logs that
capture prompts, responses,
and tool invocations.

Lack of monitoring
results in delayed
detection of agent
failures and
downstream risks.

Baseline: System
Workflows &
Autonomy

Implement real-time
monitoring of agent status,
actions, and performance
metrics, paired with
automated alerting
mechanisms that notify
operators of anomalies,
errors, or inactivity.

Lack of traceability
inhibit proper audit of
decision-making paths
in the event of failures.

Baseline: System
Workflows &
Autonomy

Implement recording of
comprehensive logs of agent
actions, inputs, outputs, and
inter-agent communications,
tagged with unique trace
identifiers.

Exposure of personally
identifiable or
sensitive data from
databases or files

Operational: File &
Data Management

Implement logging of all
database queriesin
production

Misconfiguring system
resources,
compromising system
integrity and
availability

Operational:
System
Management

Ensure logging of system
health metrics and automated
alerts to the developer team if
any metrics are abnormal

Overwhelming the

Operational:

Implement logging of all

system with inefficient | System queries to external systems
or repeated requests Management from the agent
4.4 | Ensure adequate Deviation from the Baseline: LLM, Require human approval for
human oversight user'sinstructions any high-risk cases or
(human-in-the-loop) | when performing high- | Cognitive: Planning | irreversible actions.
to verify model or risk actions. & Goal
agent output, when Allowing of Management
viable or unauthorised actions.
appropriate. Loss of data integrity Operational: File & Require user confirmation for
from overwriting or Data Management any changes to the database,
deleting database table, or files.
tables or files
4.5 | Establisha Regulatory non- Interaction: Official Provide channels for users to

vulnerability
disclosure process

compliance and
undiscovered
vulnerabilities in the
system

Communications

clarify communications or give
feedback on security and
usage

0
>
[55]
=
(2
>
(2}
<
[}
=
o
2
O
L
(2}
Z
O
=
2
[a)
P4
[51]
[a)
[a)
<
4
<C
<
e
=
Z
L
O
<
)
Z
o
2
O
L
(%)

5.2. Case Study 2: Client
Onboarding System
(In-house development)

This case study showcases an in-house development of an agentic Al system that is used
for evaluating potential customers for Company B. This multi-agent system is an
autonomy level 1 system with a linear workflow. Risks to this system include indirect
prompt injections from retrieved information, which can cause impact to the integrity or
availability of the system.

Company B is a financial institution, and has developed an agentic client onboarding system
to automate the process more efficiently. This system is known as Onboarder, and is
developed by in-house engineers.

To perform onboarding, a potential client accesses the financial institution’s website and
submits the relevant personal particulars to the Onboarder form interface. The client also
gives permission to Onboarder to access the relevant financial information that is available
through an official external financial database, only accessible by Company B if authorised
by the client using multi-factor authentication (MFA).

The system architecture for Onboarder is shown in Figure 14.

Figure 14: Simplified system architecture of Onboarder

form input from report output
client to staff evaluator

»

2

v
Coordinating
Agent

Flanning
Coordinating
Short-term TR .\
Memory \

h 4

Evaluation |g-----ccccoooo. !

Agent

Document
Fetching A

Benchmarking
Short-term
Memory
N

Data retrieval

Short-term
Memory

Report writing

Short-term
Memory
Y

*

_
K [y
r h 4 A
(== €
Daté_bﬁé-witn Company B @ @
client data LLM _ Database LLM formatting / LLM
spelicheck

tools

Onboarder is a multi-agent system consisting of specialised agents, each with its own
capability and task within the onboarding process. Each agent is equipped with their own
“brain”, LLMs fine-tuned to complete their specific tasks. The LLMs are obtained from an
open-source model-hosting website (Hugging Face). The agents each have access to the
necessary tools, functions or data to carry out their respective tasks. Lastly, the agents have
a shared memory to keep track on the progress of the onboarding task.

To better understand the onboarding process, Figure 15 shows the workflow diagram of
Onboarder.

0
>
[55]
=
(2
>
(2}
<
[}
=
o
2
O
L
(2}
Z
O
=
2
[a)
P4
[51]
[a)
[a)
<
4
<C
<
e
=
Z
L
O
<
)
Z
o
2
O
L
(%)

0
>
[55]
=
(2
>
(2}
<
[}
=
o
2
O
L
(2}
Z
O
=
2
[a)
P4
[51]
[a)
[a)
<
4
<C
<
e
=
Z
L
O
<
)
Z
o
2
O
L
(%)

Figure 15: Workflow Diagram of Onboarder

L Ty
—
S .
Coordinating Company B
\, Agent J \. Database
v h
(@) (=) @®) ®
M — [\ ~ A
Document Database with Document Evaluation
\Fetching Agent/ _ Clientdata / \Fetching Agent/ __ Agent)
g @ ™ ™ @ ™
M - <1 AR
Report Writing formatting / Report Writing

__ Agent)/ \spelichecktiool/ _ Agent /

Evaluation Coordinating
report \, Agent J

Once Onboarder receives information about the potential client, as well as the necessary
permissions from the client, a Coordinating Agent begins the onboarding process. It first
passes the data to a Document Fetching Agent who retrieves the client’s financial data,
based on the authorisation granted by the client.

Next, the retrieved financial data is passed onto an Evaluation Agent. This agent also pulls
data from Company B’s database to compare against the potential client’s data, and
evaluate their suitability to be a client. This data is a vectorised version of other clients’ data,
and fed to the agent via retrieval augmented generation (RAG). Once completed, the
Evaluation Agent passes on the results of the evaluation onto the Report Writing agents.

The Report Writing agent will draft an evaluation report based on the results received, making
use of some formatting tools for consistency in output, and spellchecking tools to help check
for errors in the document. The completed reportis sent back to the Coordinating Agent, and
output to a human staff evaluator who will assess the potential client based on the report.

0
>
[55]
=
(2
>
(2}
<
[}
=
o
2
O
L
(2}
Z
O
=
2
[a)
P4
[51]
[a)
[a)
<
4
<C
<
e
=
Z
L
O
<
)
Z
o
2
O
L
(%)

Risk Assessment and Threat Modelling

Company B performed a risk assessment to identify and address potential risks on the

confidentiality, integrity and availability of the system. If the risks are not mitigated, there is

a potential for an attacker to exploit vulnerabilities and cause Onboarder to be compromised.
This could result in exposure or loss of private customer data, or unavailability of the system

for users. These impacts would likely damage the company's reputation.

1. Map Workflows and Assess Autonomy Level

First, Company B mapped the workflow of Onboarder to get a better visibility on how to
assess its autonomy level. The workflow is seen above as Figure 15.

Company B assessed Onboarder to be an autonomy level 1 system, as the workflow is linear,
and the agents perform their tasks sequentially one after another. There is no need for
branching workflows as each agent requires the completed task from the one before. This
makes the taint tracing process fairly straightforward in the next step.

2. Threat Modelling to Identify Areas of Interest

Based on the workflow, Company B performed taint tracing to identify points of weakness in
the workflow. This will inform Company B on locations in the system to prioritise
implementing the mitigations. Figure 16 below shows the identified potential source of
untrusted data as the retrieval of data from various databases.

Figure 16: Taint Tracing of Workflow for Onboarder

Y Ty
—
— e [
Coordinating Company B

Agent ' Database
:I i R N7 ™

1
® = ® ®
[~ A) A

Y

Document Datai:;e; with Document Evaluation
\Fetching Agent/ _ clientdata / \Fetching Agent/ _ Agent)
'd @ R N7 @ ™
M - il |
Report Writing formatting / Report Writing

__ Agent J \gpelichecktool/ _ Agent)

Evaluation Coordinating

report \ Agent /

LD

—input—*|
Coordinating Company B

Agent ' Database)
i: i ™ ™ ™

be-

R -
Document Database with Document Evaluation
\Fetching Agent/ _ Clientdata / ‘\Fetching Agent’ ' __ Agent /
e @ ™ ™ @ ™
MR <1 AR
Report Writing formatting / Report Writing

‘___Agent / spelichecktool/ ' __ Agent

'd ™

Evaluation Coordinating
report . Agent)

0
>
[55]
=
(2
>
(2}
<
[}
=
o
2
O
L
(2}
Z
O
=
2
[a)
P4
[51]
[a)
[a)
<
4
<C
<
e
=
Z
L
O
<
)
Z
o
2
O
L
(%)

3. Identify Risks and Controls

As part of the threat modelling, Company B has also identified possible threat scenarios
against the Onboarder system, and assessed the potential impact, likelihood, and overall
risk faced by the system. Once the risks had been identified, Company B prioritised
addressing higher risk scenarios, and implemented mitigating controls found in Chapter 4.3
TREATMENT MEASURES / CONTROLS FOR AGENTIC Al SYSTEMS of this document. Table 6
shows an illustration of risk assessment done, and is not meant to be exhaustive.

For brevity, threat scenarios that have been highlighted in Case Study 1 will not be repeated,
though they may also be applicable in this case study.

0
>
[55]
=
(2
>
(2}
<
[}
=
o
2
O
L
(2}
Z
O
=
2
[a)
P4
[51]
[a)
[a)
<
4
<
<
e
=
Z
L
O
<
)
Z
o
2
O
L
(%)

0
>
[55]
=
(2
>
(2}
<
[}
=
o
2
O
L
(2}
Z
O
=
2
[a)
P4
[51]
[a)
[a)
<
4
<C
<
e
=
Z
L
O
<
)
Z
o
2
O
L
(%)

Table 6: Risk Assessment of Onboarder

Threat Scenario Impact Likelihood Risk Levels Mitigating
controls

Indirect prompt Confidentiality, Medium Initial Risk Whitelist only files

injection can be Integrity, Poisoned datacan | Level: which are required

introduced via a Availability: be introducedinto | Medium-High for the task.

poisoned RAG from High the RAG database (High x

Company B’s vector Unintended via compromised Medium) Implement input

database.

The poisoned data
containing the prompt
injection may cause
unintended actions to
be carried out by
Onboarder.

Capability:
Operational: File &
Data Management

actions can have a
wide range of
impacts.
Overwriting of
database files can
impact integrity,
while execution of
malicious scripts
can cause
sensitive
information
leakage to external
recipients.

files received from
emails or
uploaded to the
database.
Prompts can be
hidden as small,
white font thatis
invisible to human
readers, but can
be recognised by
an LLM.

Residual Risk
Level after
controls:
Low

(Low x Low)

guardrails to
detect indirect
promptinjection.

Implement escape
filtering before
including web
content or relevant
files into prompts.

Volumetric input of
prompts may
overwhelm the
Coordinating Agent
within the Onboarder
system, causing the
service to become
unavailable.

Capability:
Interaction:
Programmatic
Interfaces

Unclear or unspecific
prompts may cause a
the LLM to have a
reasoning loop,
slowing down the
onboarding process
and reducing
availability.

Capability:
Cognitive: Planning
and Goal
Management

Availability: High
Automated
onboarding
service becomes
unavailable,
slowing down the
process of
obtaining new
clients. Company
B would have to
revert to a manual
onboarding
process.

High

Company B is
expecting to
receive an influx of
applications with a
recent promotion,

Initial Risk
Level

High

(High x High)

Implement rate
limits on high-
frequency task
requests per agent
session.

and has not Residual Risk Deploy resource
availability Level after management
controls yet. controls: controls,
Medium-Low implement
(Medium x adaptive scaling
Low) mechanisms and
monitor system
load to detect and
mitigate overload
attemptsin real-
time.
Low Initial Risk Enforce strict
In most cases, Level schema
Onboarder Medium validation.
receives the (High x Low)

benign customer
detailsina
standardised
format. Unless the
information is
intentionally filled
to contain other
instructions in the
fields, thisis
unlikely to occur.

Residual Risk
Level after
controls:
Medium-Low
(Medium x
Low)

Enforce time or
token limits for
agent reasoning.

Set a limit on the
number of agent
interactions per
task, based on the
requirements of
the workflow.

%
>
1]
—
%
>
0
<
0}
Z
=
>
O
w
7
z
O
=
)
o)
z
L
fa)
a
<
z
<
<
o
-
z
L
o
<
[}
Z
o3
>
O
L
7

5.3. Case Study 3: Automated
Fraud Detection System

This case study showcases a multi-agent system used for automated fraud detection. This
system is an autonomy level 2 system with a branching workflow, but it is non-cyclic and
still possible to be mapped. Risks to this system include rogue agents or tools which are
given excessive agency and the autonomy to carry out malicious actions.

After the successful implementation of Onboarder (Case Study 2), Company B has received
an increasing number of reports from customers being victims of fraudulent transactions or
account take over (ATO) cases. As such, they have engaged Vendor C to implement an
automated fraud detection system based on agentic Al. This multi-agent system is known as
ScamSeer.

The architecture diagram of ScamSeer is as shown in Figure 17.

Figure 17: Simplified system architecture of ScamSeer

transacfion input evaluation output

>
>

h 4
Coordinating
Agent

Planning
Coordinating
Short-term
Memory

Fraud ATO
Evaluation -----------------------p [] €------------------o---- Evaluation
Agent Agent

Evaluating Evaluating @
L

Short-term - Short-term -
Memory Memory

A A

Short-term -

o Memory
rYy

LLM LLM

LLM

MCP Server

Company B
Database

OSINT Data

Evaluation
Tools

Scam Seer has two main functions, detecting fraudulent transactions and account take over
(ATO) detection. Before customer transactions are executed, the details are fed into
ScamSeer to verify if the transaction is legitimate, or if itis from a legitimate user.

Upon receiving the transaction request as input, the Coordinating Agent will decide to
activate either the Fraud Evaluation Agent, the ATO Evaluation Agent, or both of them. The
activated evaluation agent(s) will call the Data Retrieval Agent for the necessary data
required, as well as call for the necessary evaluation tools via an external MCP server.

The Data Retrieval Agent will retrieve the relevant customer data from Company B’s
database, and also relevant Open-Source Intelligence (OSINT) that might help indicate if the
transaction is legitimate or not. The retrieved data is passed back to the respective
Evaluation Agent for analysis and to determine legitimacy.

Once the Evaluation Agent determines if the transaction is legitimate or not, the result is
passed back to the Coordinating Agent for output to allow or deny the transaction.

0
>
[55]
=
(2
>
(2}
<
[}
=
o
2
O
L
(2}
Z
O
=
2
[a)
P4
[51]
[a)
[a)
<
4
<C
<
e
=
Z
L
O
<
)
Z
o
2
O
L
(%)

0
>
[55]
=
(2
>
(2}
<
[}
=
o
2
O
L
(2}
Z
O
=
2
[a)
P4
[51]
[a)
[a)
<
4
<C
<
e
=
Z
L
O
<
)
Z
o
2
O
L
(%)

Risk Assessment and Threat Modelling

Before integrating ScamSeer with Company B’s systems, Vendor C decided to do perform a
risk assessment to identify and address potential risks on the confidentiality, integrity and
availability of the system. If the risks are not mitigated, there is a potential for an attacker to
exploit vulnerabilities and cause Onboarder to be compromised. This could result in
exposure or loss of private customer data, or unavailability of the system for users.

1. Map Workflows and Assess Autonomy Level

First, Vendor C mapped the workflow of ScamSeer to get a better visibility on how to assess
its autonomy level. The workflow is seen in Figure 18 below.

Figure 18: Workflow Diagram of ScamSeer

[S—
@ Company B
- \ Database /

Data Retrieval
Agent

Data Retrieval
Agent

®

ATO Evaluation

Agent
X MC P

>
' ™ hzvaluation Tool

®

ATO Evaluation
Agent

L.f—@ -

OSINT Data

Cotj;gg?tting @ company & @ Cotj;‘gg?tting
- _ Database / -

Data Retrieval
Agent

Data Retrieval
Agent

L@

OSINT Data

MCP- X

Fraud Eval
Agent

Fraud Eval
Agent

Evaluation Tool

Vendor C assessed ScamSeer to be an autonomy level 2 system, as there are branching
decision points on which plugin or agent to call, but these points are predetermined.

0
>
[55]
=
(2
>
(2}
<
[}
=
o
2
O
L
(2}
Z
O
=
2
[a)
P4
[51]
[a)
[a)
<
4
<C
<
e
=
Z
L
O
<
)
Z
o
2
O
L
(%)

2. Threat Modelling to Identify Areas of Interest

Based on the workflow, Vendor C performed taint tracing to identify points of weakness in
the workflow. This will inform Vendor C on locations in the system to prioritise implementing
the mitigations. Figure 19 below shows the identified potential source of untrusted data as

the use of remote tools and remote sources of data.

Figure 19: Taint Tracing of Workflow for ScamSeer

®
[

Data Retrieval
Agent

®

ATO Evaluation
Agent

Company B
\ Database /

OSINT Data
p /’

®
[

Data Retrieval
Agent

ATO Evaluation

' A Agent

>

Coordinating
Agent

®
[

Data Retrieval
Agent

Fraud Eval
Agent

MCP

Company B
\ Database /
—_—

OSINT Data
p /’

@

>

p, QI

Evaluation Tool
pS ~

®
[

Data Retrieval
Agent

Coordinating
Agent

Fraud Eval
Agent

®
P

Data Retrieval
Agent

®

ATO Evaluation
Agent

Evaluation Tool
p. S

Company B
_ Database /

OSINT Data
p ~

,@\J

'\ Agent Q
— ATO Evaluation

Coordinating
Agent

®
[

Data Retrieval
Agent

Fraud Eval
Agent

__ Agent)/
X e
e D

' ™ Evaluation Tool
[—
> U e m A Coordinating
Company B ! '\ Agent
\ Database / -
Ty i I
MEP MCP Data Retrieval ~

OSINT Data
p /’

_,J ___Agent) E.:

Fraud Eval
Agent)

MCP-

‘ pS
Mc:

Evaluation Tool

pS ~

—output-—»

0
>
[55]
=
(2
>
(2}
<
[}
=
o
2
O
L
(2}
Z
O
=
2
[a)
P4
[51]
[a)
[a)
<
4
<C
<
e
=
Z
L
O
<
)
Z
o
2
O
L
(%)

3. Identify Risks and Controls

As part of the threat modelling, Vendor C has also identified possible threat scenarios
against the Onboarder system, and assessed the potential impact, likelihood, and overall
risk faced by the system. Once the risks had been identified, Vendor C prioritised addressing
higher risk scenarios, and implemented mitigating controls found in Chapter 4.3 TREATMENT
MEASURES / CONTROLS FOR AGENTIC Al SYSTEMS of this document. Table 7 shows an
illustration of risk assessment done, and is not meant to be exhaustive.

For brevity, threat scenarios that have been highlighted in Case Study 1 and Case Study 2.

will not be repeated, though they may also be applicable in this case study.

Table 7: Risk Assessment of ScamSeer

necessary for the task.
This can cause

unintended actions to
be carried out, or even

actions can have a
wide range of
impacts.
Overwriting of

untrusted MCP
server.

Residual Risk
Level after

Threat Scenarios Impact Likelihood Risk Levels Mitigating
controls

Tools are given the Confidentiality, Medium Initial Risk Verify that MCP

ability to execute on, Integrity, Poisoned or Level: agents are from

and access other Availability: malicious tools Medium-High trusted sources

systems and/or files High can be connected (High x before introducing

which are not Unintended to by using an Medium) them into the

system.

Establish clear
operational

malicious actions if database files can controls: boundaries to

the tools have impact integrity, Medium-Low prevent misuse of

malicious functions. while malicious (Medium x tools. Set limits on
tools can exfiltrate Low) what agents can

Baseline: Tools, Roles | sensitive access and modify
and Access Control information through
external appropriate
recipients. guardrails.

Restrict Al agent
autonomy using
policy constraints.
Scope agent
privileges
dynamically:
strictly only to
what is necessary
to run the tasks.

Do not allow
agents to modify
privileges.

The above risk assessment only shows the risks arising from taint tracing the workflow.
Vendor C still requires securing ScamSeer along its development lifecycle, as well as basic

cybersecurity hygiene practices across the system.

0
>
[55]
=
(2
>
(2}
<
[}
=
o
2
O
L
(2}
Z
O
=
2
[a)
P4
[51]
[a)
[a)
<
4
<C
<
e
=
Z
L
O
<
)
Z
o
2
O
L
(%)

ANNEX A

Threats to Agentic Al Systems

OWASP has identified 15 threats to agentic Al systems as part of their Agentic Security
Initiative for LLM Apps and Gen Al"°.

TID Threat Name Threat Description Mitigations
T1 Memory Memory poisoning involves | Implement memory content
poisoning exploiting an Al's memory systems, | validation, session isolation, robust
both short and long-term, to | authentication mechanisms for
introduce malicious or false data | memory access, anomaly detection
and exploit the agent's context. | systems, and regular memory
This can lead to altered decision- | sanitization routines. Require Al-
making and unauthorised | generated memory snapshots for
operations. forensic analysis and rollback if
anomalies are detected.

T2 Tool misuse Tool misuse occurs when attackers | Enforce strict tool access
manipulate Al agents to abuse their | verification, monitor tool usage
integrated tools through deceptive | patterns, validate agent
prompts or commands, operating | instructions, and set clear
within authorised permissions. | operational boundaries to detect
This includes agent hijacking, | and prevent misuse. Implement
where an Al agent ingests | executionlogsthattrack Altoolcalls
adversarial manipulated data and | for anomaly detection and post-
subsequently executes unintended | incident review.
actions, potentially triggering
malicious tool interactions.

T3 Privilege Privilege compromise arises when | Implement granular permission

compromise attackers exploit weaknesses in | controls, dynamic access
permission management to | validation, robust monitoring of role
perform unauthorised actions. This | changes, and thorough auditing of
often involves dynamic role | elevated privilege operations.
inheritance or misconfigurations. Prevent cross-agent privilege
delegation unless explicitly
authorised through predefined
workflows.
T4 Resource Resource overload targets the | Deploy resource management
overload computational, memory and | controls, implement adaptive
service capacities of Al systems to | scaling mechanisms, establish
degrade performance or cause | quotas, and monitor system load in

1 OWASP. OWASP Top 10 for LLMs - GenAl Red Teaming Guide.

0
>
[55]
=
(2
>
(2}
<
[}
=
o
2
O
L
(2}
Z
O
=
2
[a)
P4
[51]
[a)
[a)
<
4
<C
<
e
=
Z
L
O
<
)
Z
o
2
O
L
(%)

TID

Threat Name

Threat Description

Mitigations

failures, exploiting their resource-
intensive nature.

real-time to detect and mitigate
overload attempts. Implement Al
rate-limiting policies to restrict high-
frequency task requests per agent
session.

T5 Cascading These attacks exploit an Al's | Establish robust output validation
hallucination tendency to generate contextually | mechanisms, implement
attacks plausible but false information, | behavioural constraints, deploy

which can propagate through | multi-source validation, and ensure

systems and disrupt decision- | ongoing system corrections through

making. This can also lead to | feedback loops. Require secondary

destructive reasoning affecting | validation of Al-generated

tools invocation. knowledge before it is used in
critical decision-making processes.
This will face the same constraints
of scaling Al as discussed in
Overwhelming Human In the Loop
and would require similar
approaches.

T6 Intent breaking & | This threat exploits vulnerabilities | Implement planning validation
goal in an Al agent's planning and goal- | frameworks, boundary
manipulation setting capabilities, allowing | management for reflection

attackers to manipulate or redirect | processes, and dynamic protection

the agent's objectives and | mechanisms for goal alignment.

reasoning. One common approach | Deploy Al behavioural auditing by

is agent hijacking mentioned in tool | having another model check the

misuse. agent and flag significant goal
deviations that could indicate
manipulation.

T7 Misaligned & Al agents executing malicious or | Train models to recognize and
deceptive disallowed actions by exploiting | refuse malicious tasks, enforce
behaviours reasoning and deceptive | policy restrictions, require human

responses to meet their objectives. | confirmations for high-risk actions,
implement logging and monitoring.
Utilize deception detection
strategies such as behavioural
consistency analysis, truthfulness
verification models, and adversarial
red teaming to assess
inconsistencies between Al outputs
and expected reasoning pathways.

T8 Repudiation & This occurs when actions | Implement comprehensive logging,

untraceability

performed by Al agents cannot be
traced backoraccounted fordueto
insufficient logging or transparency
in decision-making processes.

cryptographic verification, enriched
metadata, and real-time monitoring
to ensure accountability and
traceability. Require Al-generated
logs to be cryptographically signed
and immutable for regulatory
compliance.

0
>
[55]
=
(2
>
(2}
<
[}
=
o
2
O
L
(2}
Z
O
=
2
[a)
P4
[51]
[a)
[a)
<
4
<C
<
e
=
Z
L
O
<
)
Z
o
2
O
L
(%)

TID Threat Name Threat Description Mitigations

T9 Identity spoofing | Attackers exploit authentication | Develop comprehensive identity
& impersonation mechanisms to impersonate Al | validation frameworks, enforce trust

agents or human users, enabling | boundaries, and deploy continuous

them to execute unauthorised | monitoring to detect impersonation

actions under false identities. attempts. Use behavioural profiling,
involving a second model, to detect
deviations in Al agent activity that
may indicate identity spoofing.

T10 Overwhelming This threat targets systems with | Develop advanced human-Al
human in the human oversight and decision | interaction frameworks, and
loop validation, aiming to exploit human | adaptive trust mechanisms. These

cognitive limitations or | are dynamic Al governance models

compromise interaction | that employ dynamic intervention

frameworks. thresholds to adjust the level of
human oversight and automation
based on risk, confidence, and
context. Apply hierarchical Al-
human collaboration where low-risk
decisions are automated, and
human intervention is prioritized for
high-risk anomalies.

T11 Unexpected RCE | Attackers exploit Al-generated | Restrict Al code generation
and code attacks | execution environments to inject | permissions, sandbox execution,

malicious code, trigger unintended | and monitor Al-generated scripts.

system behaviours, or execute | Implement execution control

unauthorised scripts. policies that flag Al-generated code
with elevated privileges for manual
review.

T12 Agent Attackers manipulate | Deploy cryptographic message
communication communication channels between | authentication, enforce
poisoning Al agents to spread false | communication validation policies,

information, disrupt workflows, or | and monitor inter-agent interactions
influence decision-making. for anomalies. Require multi-agent
consensus verification for mission-
critical decision-making processes.

T13 Rogue agents in Malicious or compromised Al | Restrict Al agent autonomy using
multi-agent agents operate outside normal | policy constraints and continuous
systems monitoring boundaries, executing | behavioural monitoring. While

unauthorised actions or exfiltrating | cryptographic attestation

data. mechanisms for LLMs do not yet
exist, agent integrity can be
maintained via controlled hosting
environments, regular Al red
teaming, and input/output
monitoring for deviations

T14 Human attacks Adversaries exploit inter-agent Restrict agent delegation
on multi-agent delegation, trust relationships, and | mechanisms, enforce inter-agent
systems workflow dependencies to authentication, and deploy

escalate privileges or manipulate
Al-driven operations.

behavioural monitoring to detect
manipulation attempts. Enforce

0
>
[55]
=
(2
>
(2}
<
[}
=
o
2
O
L
(2}
Z
O
=
2
[a)
P4
[51]
[a)
[a)
<
4
<C
<
e
=
Z
L
O
<
)
Z
o
2
O
L
(%)

TID

Threat Name

Threat Description

Mitigations

multi-agent task segmentation to
prevent attackers from escalating
privileges across interconnected
agents.

T15

Human
manipulation

In scenarios where Al agents
engage in direct interaction with
human users, the trust
relationship reduces user
scepticism, increasing reliance on
the agent's responses and
autonomy. This implicit trust and
direct human/agent interaction
create risks, as attackers can
coerce agents to manipulate
users, spread misinformation, and
take covert actions.

Monitor agent behaviour to ensure it
aligns with its defined role and
expected actions. Restrict tool
access to minimize the attack
surface, limit the agent's ability to
print links, implement validation
mechanisms to detect and filter
manipulated responses using
guardrails, moderation APIs, or
another model.

ANNEXB
Model Context Protocol

Model Context Protocol (MCP) is an open protocol that standardises how applications
provide context to LLMs. An analogy would be like a USB-C port on a computer. Just as how
USB-C provides a standard way to connect devices, MCP provides a standard way to connect
Al models to various tools and resources.

MCP follows a client-server architecture where a host application can connect to multiple
servers:

Figure 20: General MCP Architecture

Your Computer

Local Data
Source

-

Host with

MCP Client MCP

—

MCP Server

Web APls Internet

Remote
service

" Anthropic. Model Context Protocol, Introduction.

0
>
[55]
=
(2
>
(2}
<
[}
=
o
2
O
L
(2}
Z
O
=
2
[a)
P4
[51]
[a)
[a)
<
4
<C
<
e
=
Z
L
O
<
)
Z
o
2
O
L
(%)

https://modelcontextprotocol.io/introduction

Components in MCP architecture:

e MCP Hosts: Programs like Claude Desktop, IDEs or Al tools that want to access data
through MCP

e MCP Clients: Protocol clients that maintain 1:1 connections with servers

e MCP Servers: Lightweight programs that each expose specific capabilities through
the standardized Model Context Protocol

e |ocalData Sources: Computer’s files, databases, and services that MCP servers can
securely access

e Remote Services: External systems available over the internet (e.g., through APIs)
that MCP servers can connect to

The main difference from other tool invocation setups, such as OpenAPI is that MCP is
dynamic, allowing runtime discovery of available tools from a given server.

Risks and Threats

Calling for tools has inherent dangers, no matter the implementation (OpenAPI, Al Actions,
or MCP). All are susceptible to prompt injection and confused deputy threats'.

Other possible threats include Server Name Collision, Installer Spoofing, Backdoors, Tool
Name Conflicts, Sandbox Escapes, and Configuration Drift's.

2 Rehberger, J. MCP: Untrusted Servers and Confused Clients, Plus a Sneaky Exploit.
¥ Hou, X., Zhao, Y., Wang, S., & Wang, H. Model Context Protocol (MCP): Landscape, Security
Threats, and Future Research Directions.

0
>
[55]
=
(2
>
(2}
<
[}
=
o
2
O
L
(2}
Z
O
=
2
[a)
P4
[51]
[a)
[a)
<
4
<C
<
e
=
Z
L
O
<
)
Z
o
2
O
L
(%)

https://embracethered.com/blog/posts/2025/model-context-protocol-security-risks-and-exploits/
https://arxiv.org/pdf/2503.23278
https://arxiv.org/pdf/2503.23278

0
>
[55]
=
(2
>
(2}
<
[}
=
o
2
O
L
(2}
Z
O
=
2
[a)
P4
[51]
[a)
[a)
<
4
<C
<
e
=
Z
L
O
<
)
Z
o
2
O
L
(%)

Mitigation Recommendations

While Anthropic’s MCP specification ' does not cover all threats, it provides
recommendations on the secure usage and configuration of MCP '®;

1.
2.
3.

Do not randomly download or connect Al to untrusted MCP or OpenAPI tool servers.
Inspect code, interface definition, check for backdoors, hidden instructions.

Use MCP servers from trusted and reputable entities (e.g. if GitHub ships a tool
server, it is best to use the one from GitHub, and not a random one).

Follow basic security practices such as peer code reviews, static analysis and threat
modelling.

Human oversight - keeping humans in the loop and in control is essential as there is
no deterministic solution for prompt injections.

Logging and monitoring - track human identities to Al actions.

Manage prompt injection threats based on scenario and context.

14 Anthropic. Model Context Protocol, Core architecture.
8 Rehberger, J. MCP: Untrusted Servers and Confused Clients, Plus a Sneaky Exploit.

https://modelcontextprotocol.io/docs/concepts/architecture
https://embracethered.com/blog/posts/2025/model-context-protocol-security-risks-and-exploits/

%
>
1]
—
%
>
0
<
0}
Z
=
>
O
w
7
z
O
=
)
o)
z
L
fa)
a
<
z
<
<
o
-
z
L
o
<
[}
Z
o3
>
O
L
7

ANNEX C

Agent 2 Agent Protocol

The Agent2Agent (A2A) Protocol is an open standard designed to enable seamless
communication and collaboration between Al agents’®. It facilitates dynamic, multimodal
communication between different agents as peers, allowing agents to collaborate, delegate,
and manage shared tasks.

MCP and A2A

MCP connects agents to tools and resources, whereas A2A enables agent-to-agent
collaboration. Figure 21 shows how MCP and A2A may be used together in a multi-agent
system.

Figure 21: A2A and MCP as Complementary Protocols

@

<«€——A2A protocol

Agent Agent

MCP MCP

X

——
MCP Server %

X

——
MCP Server %

Arepunoq [eaiBojouyae) Jo [euonesiuebio

8 Google LLC. What is A2A?
7 Google LLC. A2A and MCP: Complementary Protocols for Agentic Systems.

https://a2aproject.github.io/A2A/latest/topics/what-is-a2a/
https://a2aproject.github.io/A2A/latest/topics/a2a-and-mcp/#how-a2a-and-mcp-complement-each-other

Advantages of A2A

Traditional enterprise systems rely on APIs, requiring knowledge of specific endpoints and
tightly coupled logic. This leads to systems becoming rigid and unscalable as agent
complexity increases. A2A shifts communications from calling functions, to expressing
goals with constraints'. This reduces integration complexity, fosters innovation, and future-
proofs systems.

In A2A, agents operate without having to share internal memory, tools, or proprietary logic.
Agents interact based on declared capabilities and exchanged context, preserving
intellectual property and enhancing security’®.

Threats and Mitigations

A2A as a protocol has made inter-agent communication much more convenient, however,
with this capability comes more threats and potential attack surfaces.

The following table lists some possible threats to a system using the A2A protocol, as well as
possible mitigations?.

Table 8: Threats and Mitigation to A2A protocol

Threats Mitigations
Message generation attacks Input and Output validation
Model extraction Enforce rate limits on A2A interactions for

each session / user/ agent.

Observe query patterns for anomalies that
suggest probing or data extraction
attempts.

Data poisoning through message parts Strong validation of message parts.

Limit agent access with principle of least
privilege.

Track origin and lineage of data.
Sensitive information disclosure Automated Pll redaction.

Fine-grained access control.
Context-aware guardrails.

8 Auxiliobits. Agent-to-Agent Protocols: How Google’s A2A is Shaping Future Automations?
9 Google LLC. What is A2A?
20 Huang, K. Threat Modeling Google's A2A Protocol with the MAESTRO Framework.

0
>
[55]
=
(2
>
(2}
<
[}
=
o
2
O
L
(2}
Z
O
=
2
[a)
P4
[51]
[a)
[a)
<
4
<C
<
e
=
Z
L
O
<
)
Z
o
2
O
L
(%)

https://www.auxiliobits.com/blog/agent-to-agent-protocols-how-googles-a2a-is-shaping-future-automations/#elementor-toc__heading-anchor-1
https://a2aproject.github.io/A2A/latest/topics/what-is-a2a/
https://cloudsecurityalliance.org/blog/2025/04/30/threat-modeling-google-s-a2a-protocol-with-the-maestro-framework

0
>
[55]
=
(2
>
(2}
<
[}
=
o
2
O
L
(2}
Z
O
=
2
[a)
P4
[51]
[a)
[a)
<
4
<C
<
e
=
Z
L
O
<
)
Z
o
2
O
L
(%)

Threats

Mitigations

Unauthorised agent impersonation

Require agents to use Decentralised
identifiers (DID).

Secure authentication.

Implement a trusted agent registry.

Message injection attacks

Implement digital signhatures for A2A
messages.

Input validation.

Content filtering.

Protocol downgrade attacks

Have secure protocol negotiation, such as
TLS with secure authentication.

Enforce deprecation policy for older
protocol versions.

Malicious A2A server impersonating a
trusted company

Decentralised identifiers (DID) for server
identities.

Certificate transparency for agent cards.
Mutual TLS (mTLS) authentication.
DNSSEC for server domain.

Agent registry verification.

Agent card signature verification.

MFA for critical operations.

Behavioural analysis and reputation
systems.

Auditing and logging.

Deploy honeypot A2A servers.

Denial of service attacks

Robust infrastructure.
DDoS protection.
Rate limiting.

Manipulation of logging data

Secure logging infrastructure.
Log integrity monitoring.
Anomaly detection.

Unauthorised access to agent credentials

Secure key storage.
Key rotation.

Lack of compliance on sensitive data

Data minimisation.
Pseudonymisation/Anonymisation

Malicious agent interaction

Secure inter-agent communication.
Agent reputation systems.
Sandbox agents.

Flaws in Multi-Agent Collaboration
Mechanisms

(In multi-agent systems, deficiencies in
internal collaboration mechanisms can
manifest as follows: when agents make
distributed decisions based on localized
information, conflicts between their
objectives may result in systemic failures.)

Establish a coordination and management
mechanism for multi-agents.

0
>
[55]
=
(2
>
(2}
<
[}
=
o
2
O
L
(2}
Z
O
=
2
[a)
P4
[51]
[a)
[a)
<
4
<C
<
e
=
Z
L
O
<
)
Z
o
2
O
L
(%)

REFERENCES

AG2. (n.d.). UserProxyAgent. Retrieved from AG2: https://docs.ag2.ai/0.8.7/docs/api-
reference/autogen/UserProxyAgent/

Al Verify Foundation. (n.d.). List of Datasets. Retrieved from Moonshot: https://aiverify-
foundation.github.io/moonshot/resources/datasets/

Anthropic. (18 Jun, 2025). Model Context Protocol, Core architecture. Retrieved from Model
Context Protocol: https://modelcontextprotocol.io/docs/concepts/architecture

Anthropic. (18 Jun, 2025). Model Context Protocol, Introduction. Retrieved from Model
Context Protocol: https://modelcontextprotocol.io/introduction

Anthropic. (n.d.). Content moderation. Retrieved from
https://docs.anthropic.com/en/docs/about-claude/use-case-guides/content-
moderation

Apostrophe Technologies. (May, 2025). sanitize-html. Retrieved from npm:
https://www.npmjs.com/package/sanitize-html

Arias, D., & Bellen, S. (7 Oct, 2021). What Are Refresh Tokens and How to Use Them
Securely, auth0. Retrieved from authO: https://authO.com/blog/refresh-tokens-
what-are-they-and-when-to-use-them/

Auxiliobits. (2025). Agent-to-Agent Protocols: How Google’s A2A is Shaping Future
Automations? Retrieved from Auxiliobits: https://www.auxiliobits.com/blog/agent-
to-agent-protocols-how-googles-a2a-is-shaping-future-automations/#elementor-
toc__heading-anchor-1

AWS. (Aug, 2025). AWS Prescriptive Guidance: Operationalizing agentic Al on AWS.
Retrieved from AWS: https://docs.aws.amazon.com/prescriptive-
guidance/latest/strategy-operationalizing-agentic-ai/introduction.html

AWS. (n.d.). Control subnet traffic with network access control lists. Retrieved from AWS:
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-network-acls.html

AWS. (n.d.). Security best practices in IAM. Retrieved from AWS:
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

AWS. (n.d.). Use temporary credentials with AWS resources. Retrieved from AWS:
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-
resources.html

AWS. (n.d.). What is AWS Secrets Manager? Retrieved from AWS:
https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html

0
>
[55]
=
(2
>
(2}
<
[}
=
o
2
O
L
(2}
Z
O
=
2
[a)
P4
[51]
[a)
[a)
<
4
<C
<
e
=
Z
L
O
<
)
Z
o
2
O
L
(%)

Besen, S., & Gutowska, A. (n.d.). What is Agent Communication Protocol (ACP)? Retrieved
from IBM: https://www.ibm.com/think/topics/agent-communication-protocol

Cameron, A. (8 Apr, 2025). pip-audit. Retrieved from PyPI: https://pypi.org/project/pip-
audit/

Center for Research on Foundation Models (CRFM), Stanford University. (2025). Holistic
Evaluation of Language Models (HELM). Retrieved from
https://crfm.stanford.edu/helm/

Chhikara, P., Khant, D., Aryan, S., Singh, T., & Yadav, D. (28 Apr, 2025). MemO: Building
Production-Ready Al Agents with Scalable Long-Term Memory. Retrieved from arxiv:
https://arxiv.org/abs/2504.19413v1

CISA. (2025). Software Bill of Materials (SBOM). Retrieved from CISA:
https://www.cisa.gov/sbom

Cloud Security Alliance. (21 Aug, 2024). Best practices for event logging and threat
detection. Retrieved from Cloud Security Alliance:
https://cloudsecurityalliance.org/resources/best-practices-for-event-logging-and-
threat-detection

Cloud Security Alliance. (16 Jul, 2025). Agentic Al Red Teaming Guide. Retrieved from Cloud
Security Alliance: https://cloudsecurityalliance.org/artifacts/agentic-ai-red-
teaming-guide

Cloudflare. (n.d.). What is mutual TLS (mTLS)? Retrieved from Cloudflare:
https://www.cloudflare.com/learning/access-management/what-is-mutual-tls/

CodeSignal. (2025). Developing a Robust System Prompt. Retrieved from CodeSignal:
https://codesignal.com/learn/courses/building-a-chatbot-service-with-
fastapi/lessons/crafting-a-robust-system-prompt-for-chatbot-interaction

Conversation-Al. (n.d.). Enabling online conversations. Retrieved from Perspective:
https://www.perspectiveapi.com/

crewAl Inc. (n.d.). Human-in-the-Loop (HITL) Workflows. Retrieved from crewAl:
https://docs.crewai.com/en/learn/human-in-the-loop

Cure5b3. (n.d.). DOMPurify. Retrieved from Github: https://github.com/cure53/DOMPurify

Cyber Security Agency of Singapore. (27 Jul, 2022). Critical Information Infrastructure
Supply Chain Programme Paper. Retrieved from CSA:
https://www.csa.gov.sg/resources/publications/critical-information-infrastructure-
supply-chain-programme-paper

Cyber Security Agency of Singapore. (15 Oct, 2024). Guidelines and Companion Guide on
Securing Al Systems. Retrieved from CSA:
https://www.csa.gov.sg/resources/publications/guidelines-and-companion-guide-
on-securing-ai-systems

0
>
[55]
=
(2
>
(2}
<
[}
=
o
2
O
L
(2}
Z
O
=
2
[a)
P4
[51]
[a)
[a)
<
4
<C
<
e
=
Z
L
O
<
)
Z
o
2
O
L
(%)

Cyber Security Agency of Singapore. (5 Jun, 2025). Responsible Vulnerability Disclosure
Policy. Retrieved from https://isomer-user-content.by.gov.sg/36/4aa60609-4481-
4e7c-92eb-2728247a084f/responsible-vulnerability-disclosure-policy.pdf

Cyber Security Agency of Singapore. (20 Jan, 2025). Supplementary references. Retrieved
from CSA: https://www.csa.gov.sg/legislation/supplementary-references

Debenedetti, E., Shumailov, I., Fan, T., Hayes, J., Carlini, N., Fabian, D., ... Tramer, F. (24
Jun, 2025). Defeating Prompt Injections by Design. Retrieved from arxiv:
https://arxiv.org/abs/2503.18813

Diaz, S., Kern, C., & Olive, K. (May, 2025). Google’s Approach for Secure Al Agents.
Retrieved from Google Research: https://research.google/pubs/an-introduction-to-
googles-approach-for-secure-ai-agents/

E2B. (26 Aug, 2025). E2B. Retrieved from GitHub: https://github.com/e2b-dev/E2B

EU Al Act Holistic Al Team. (1 Aug, 2024). High-Risk Al Systems Under the EU Al Act.
Retrieved from EU Al Act: https://www.euaiact.com/blog/high-risk-ai-systems-
under-the-eu-ai-act

Explosion. (n.d.). Industrial-Strength Natural Language Processing. Retrieved from spaCy:
https://spacy.io/

Feldman, E. (15 Apr, 2025). Implementing effective guardrails for Al agents. Retrieved from
The Source Gitlab: https://about.gitlab.com/the-source/ai/implementing-effective-
guardrails-for-ai-agents/

Flinders, M., Smalley, I., & Schneider, J. (30 Apr, 2025). Al fraud detection in banking.
Retrieved from IBM: https://www.ibm.com/think/topics/ai-fraud-detection-in-
banking

Fortinet. (2025). What Is A Message Authentication Code? Retrieved from Fortinet:
https://www.fortinet.com/resources/cyberglossary/message-authentication-code

Gabarda, F. C. (1 Jul, 2025). Model Context Protocol (MCP): Understanding security risks
and controls. Retrieved from Red Hat Blog:
https://www.redhat.com/en/blog/model-context-protocol-mcp-understanding-
security-risks-and-controls

GitHub. (28 Nov, 2022). Rate limits for the REST API. Retrieved from GitHub Docs:
https://docs.github.com/en/rest/using-the-rest-api/rate-limits-for-the-rest-
api?apiVersion=2022-11-28

GitHub. (n.d.). Dependabot quickstart guide. Retrieved from GitHub Docs:
https://docs.github.com/en/code-security/getting-started/dependabot-quickstart-
guide

GitLab. (n.d.). Dependency Scanning. Retrieved from GitLab Docs:
https://docs.gitlab.com/user/application_security/dependency_scanning/

0
>
[55]
=
(2
>
(2}
<
[}
=
o
2
O
L
(2}
Z
O
=
2
[a)
P4
[51]
[a)
[a)
<
4
<C
<
e
=
Z
L
O
<
)
Z
o
2
O
L
(%)

GitLab. (n.d.). What is version control? Retrieved from GitLab:
https://about.gitlab.com/topics/version-control/

Gittlen, S. (2 May, 2024). The ultimate guide to SBOMs. Retrieved from GitLab:
https://about.gitlab.com/blog/the-ultimate-guide-to-sboms/

Google. (n.d.). About IAM authentication. Retrieved from Google Cloud:
https://cloud.google.com/memorystore/docs/valkey/about-iam-auth

Google. (n.d.). Cutom Search JSON API. Retrieved from
https://developers.google.com/custom-search/v1/overview

Google LLC. (9 Apr, 2025). A2A and MCP: Complementary Protocols for Agentic Systems.
Retrieved from Agent2Agent (A2A) Protocol:
https://a2aproject.github.io/A2A/latest/topics/a2a-and-mcp/#how-a2a-and-mcp-
complement-each-other

Google LLC. (9 Apr, 2025). What is A2A? Retrieved from Agent2Agent (A2A) Protocol:
https://a2aproject.github.io/A2A/latest/topics/what-is-a2a/

Google. (n.d.). Secret Manager overview. Retrieved from Google Cloud:
https://cloud.google.com/secret-manager/docs/overview

GovTech Singapore (Al Practice). (Jul, 2025). Agentic Risk & Capability Framework.
Retrieved from https://govtech-responsibleai.github.io/agentic-risk-capability-
framework/

Guardrails Al. (n.d.). Guardrails Al. Retrieved from Github: https://github.com/guardrails-
ai/guardrails

Harang, R., & Sablotny, M. (25 Feb, 2025). Agentic Autonomy Levels and Security. Retrieved
from NVIDIA DEVELOPER: https://developer.nvidia.com/blog/agentic-autonomy-
levels-and-security/

HashiCorp. (n.d.). Vault. Retrieved from GitHub: https://github.com/hashicorp/vault

Helicone Inc. (n.d.). Helicone. Retrieved from GitHub:
https://github.com/Helicone/helicone

Hou, X., Zhao, Y., Wang, S., & Wang, H. (Apr, 2025). Model Context Protocol (MCP):
Landscape, Security Threats, and Future Research Directions. Retrieved from
https://arxiv.org/pdf/2503.23278

Huang, K. (22 Dec, 2024). 7 Layered Agentic Al Reference Architecture. Retrieved from
Medium: https://kenhuangus.medium.com/7-layered-agentic-ai-reference-
architecture-20276f83b7ee

Huang, K. (02 Jun, 2025). Agentic Al Threat Modeling Framework: MAESTRO. Retrieved from
Cloud Security Alliance:
https://cloudsecurityalliance.org/blog/2025/02/06/agentic-ai-threat-modeling-
framework-maestro

0
>
[55]
=
(2
>
(2}
<
[}
=
o
2
O
L
(2}
Z
O
=
2
[a)
P4
[51]
[a)
[a)
<
4
<C
<
e
=
Z
L
O
<
)
Z
o
2
O
L
(%)

Huang, K. (30 Apr, 2025). Threat Modeling Google's A2A Protocol with the MAESTRO
Framework. Retrieved from Cloud Security Alliance:
https://cloudsecurityalliance.org/blog/2025/04/30/threat-modeling-google-s-a2a-
protocol-with-the-maestro-framework

Huang, K., Narajala, V. S., Yeoh, J., Ross, J., Raskar, R., Harkati, Y., ... Hughes, C. (28 May,
2025). A Novel Zero-Trust Identity Framework for Agentic Al: Decentralized
Authentication and Fine-Grained Access Control. Retrieved from arxiv:
https://arxiv.org/abs/2505.19301

Hugging Face. (n.d.). Daily Papers: Instruction Following Score. Retrieved from
https://huggingface.co/papers?g=Instruction%20Following%20Score%20(IFS)

Hugging Face. (n.d.). Model Cards. Retrieved from Hugging Face:
https://huggingface.co/docs/hub/en/model-cards

Hugging Face. (n.d.). Pickle Scanning. Retrieved from Hugging Face:
https://huggingface.co/docs/hub/security-pickle

IETF OAuth Working Group. (n.d.). OAuth Scopes. Retrieved from OAuth 2.0:
https://oauth.net/2/scope/

Invariant. (1 Apr, 2025). MCP Security Notification: Tool Poisoning Attacks. Retrieved from
Invariantlabs: https://invariantlabs.ai/blog/mcp-security-notification-tool-
poisoning-attacks

Jambrecic, R. (7 Jan, 2025). Tools Dependency Injection. Retrieved from AG2:
https://docs.ag2.ai/latest/docs/blog/2025/01/07/Tools-Dependency-Injection/

Jarvis, C. (19 Dec, 2023). How to implement LLM guardrails. Retrieved from OpenAl
Cookbook: https://cookbook.openai.com/examples/how_to_use_guardrails

Jin, X, Guo, Z., Zhang, P., Lu, S., Dai, W., Nujibieke, . . . Li, G. (2 Feb, 2025). Bridging Minds
and Machines: Agents with Human-in-the-Loop — Frontier Research, Real-World
Impact, and Tomorrow’s Possibilities. Retrieved from Camel-Al:
https://www.camel-ai.org/blogs/human-in-the-loop-ai-camel-integration

Kartha, V. (3 May, 2024). Self-Reflecting Al Agents Using LangChain. Retrieved from
Medium: https://vijaykumarkartha.medium.com/self-reflecting-ai-agents-using-
langchain-d3a93684da92

Kumar, A., Roh, J., Naseh, A., Karpinska, M., lyyer, M., Houmansadr, A., & Bagdasarian, E. (5
Feb, 2025). OverThink: Slowdown Attacks on Reasoning LLMs. Retrieved from arxiv:
https://arxiv.org/abs/2502.02542

LangChain. (2025). How to pass run time values to tools. Retrieved from LangChain:
https://python.langchain.com/docs/how_to/tool_runtime/

LangChain. (2025). LangMem. Retrieved from LangGraph: https://langchain-
ai.github.io/langmem/

0
>
[55]
=
(2
>
(2}
<
[}
=
o
2
O
L
(2}
Z
O
=
2
[a)
P4
[51]
[a)
[a)
<
4
<C
<
e
=
Z
L
O
<
)
Z
o
2
O
L
(%)

LangChain. (n.d.). E2B Data Analysis. Retrieved from LangChain:
https://python.langchain.com/docs/integrations/tools/e2b_data_analysis/

LangChain. (n.d.). LangGraph interrupt: Making it easier to build human-in-the-loop agents
with interrupt. Retrieved from LangChain: https://blog.langchain.com/making-it-
easier-to-build-human-in-the-loop-agents-with-interrupt/

Langfuse. (n.d.). Open Source LLM Engineering Platform. Retrieved from Langfuse:
https://langfuse.com/

LangSmith. (n.d.). Ship agents with confidence. Retrieved from LangSmith:
https://www.langchain.com/langsmith

Liu, X, Yu, H., Zhang, H., Xu, Y., Lei, X., Lai, H., .. . Tang, J. (25 Oct, 2023). AgentBench:
Evaluating LLMs as Agents. Retrieved from arxiv: https://arxiv.org/abs/2308.03688

Lucas, J. (16 Dec, 2024). Sandboxing Agentic Al Workflows with WebAssembly. Retrieved
from NVIDIA Developer: https://developer.nvidia.com/blog/sandboxing-agentic-ai-
workflows-with-webassembly/

Meadows, J., & Chang, A. (27 Mar, 2024). How to choose a known, trusted supplier for open
source software. Retrieved from Google Cloud:
https://cloud.google.com/blog/products/identity-security/how-to-choose-a-
known-trusted-supplier-for-open-source-software

Meta Llama. (n.d.). Purple Llama. Retrieved from Github: https://github.com/meta-
llama/PurpleLlama

Microsoft Al Red Team. (2024). PyRIT. Retrieved from https://azure.github.io/PyRIT/

Microsoft Azure. (5 Jul, 2024). What is an IP based access control list (ACL)? Retrieved from
Microsoft Learn: https://learn.microsoft.com/en-us/azure/virtual-network/ip-
based-access-control-list-overview

Microsoft. (n.d.). Presidio: Data Protection and De-identification SDK. Retrieved from
Microsoft Presidio: https://microsoft.github.io/presidio/

Mitchell, M., Wu, S., Zaldivar, A., Barnes, P., Vasserman, L., Hutchinson, B., ... Gebru, T.
(14 Jan, 2019). Model Cards for Model Reporting. Retrieved from arxiv:
https://arxiv.org/abs/1810.03993

MITRE. (n.d.). ATLAS Matrix. Retrieved from MITRE ATLAS:
https://atlas.mitre.org/matrices/ATLAS

MITRE. (n.d.). Supply Chain Security Framework. Retrieved from MITRE System of Trust:
https://sot.mitre.org/framework/system_of_trust.html

Mu, N., Lu, J., Lavery, M., & Wagner, D. (15 Feb, 2025). A Closer Look at System Prompt
Robustness. Retrieved from https://arxiv.org/abs/2502.12197

0
>
[55]
=
(2
>
(2}
<
[}
=
o
2
O
L
(2}
Z
O
=
2
[a)
P4
[51]
[a)
[a)
<
4
<C
<
e
=
Z
L
O
<
)
Z
o
2
O
L
(%)

Murua, T. (1 May, 2025). RAG and the value of grounding. Retrieved from elastic search labs:
https://www.elastic.co/search-labs/blog/grounding-rag

National Security Agency. (5 Mar, 2024). Advancing Zero Trust Maturity Throughout the
Network and Environment Pillar. Retrieved from NSA:
https://media.defense.gov/2024/Mar/05/2003405462/-1/-1/0/CSI-ZERO-TRUST-
NETWORK-ENVIRONMENT-PILLAR.PDF

Nelson, A., Rekhi, S., Souppaya, M., & Scarfone, K. (n.d.). Special Publication 800-61r3
Incident Response Recommendationsand Considerations for CybersecurityRisk
Management. Retrieved from NIST:
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-61r3.pdf

NIST. (14 Jan, 2025). Cryptographic Standards and Guidelines. Retrieved from NIST:
https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines

NVIDIA. (2025). About NeMo Guardrails. Retrieved from NVIDIA:
https://docs.nvidia.com/nemo/guardrails/latest/index.html#

NVIDIA. (n.d.). garak, LLM vulnerability scanner. Retrieved from Github:
https://github.com/NVIDIA/garak

OpenAl. (2025). Guardrails. Retrieved from OpenAl Agents SDK:
https://openai.github.io/openai-agents-python/guardrails/

OpenAl. (n.d.). Moderation. Retrieved from
https://platform.openai.com/docs/guides/moderation

OpenlJS Foundation. (n.d.). ESLint. Retrieved from GitHub: https://github.com/eslint/eslint

OWASP. (22 Apr, 2025). OWASP Gen Al Security Project - Multi-Agentic system Threat
Modelling Guide. Retrieved from https://genai.owasp.org/resource/multi-agentic-
system-threat-modeling-guide-v1-0/

OWASP. (28 Jun, 2025). OWASP Gen Al Security Project - Securing Agentic Applications
Guide. Retrieved from https://genai.owasp.org/resource/securing-agentic-
applications-guide-1-0/

OWASP. (17 Feb, 2025). OWASP Top 10 for LLMs - Agentic Al - Threats and Mitigations.
Retrieved from https://genai.owasp.org/resource/agentic-ai-threats-and-
mitigations/

OWASP. (23 Jan, 2025). OWASP Top 10 for LLMs - GenAl Red Teaming Guide. Retrieved
from https://genai.owasp.org/resource/genai-red-teaming-guide/

OWASP. (n.d.). Authentication Cheat Sheet. Retrieved from OWASP Cheat Sheet Series:
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.htm
L

OWASP. (n.d.). Authorization Cheat Sheet. Retrieved from OWASP Cheat Sheet Series:
https://cheatsheetseries.owasp.org/cheatsheets/Authorization_Cheat_Sheet.html

0
>
[55]
=
(2
>
(2}
<
[}
=
o
2
O
L
(2}
Z
O
=
2
[a)
P4
[51]
[a)
[a)
<
4
<C
<
e
=
Z
L
O
<
)
Z
o
2
O
L
(%)

OWASP. (n.d.). Content Security Policy Cheat Sheet. Retrieved from OWASP Cheat Sheet
Series:
https://cheatsheetseries.owasp.org/cheatsheets/Content_Security_Policy_Cheat_
Sheet.html

OWASP. (n.d.). Docker Security Cheat Sheet. Retrieved from OWASP Cheat Sheet Series:
https://cheatsheetseries.owasp.org/cheatsheets/Docker_Security_Cheat_Sheet.ht
ml

OWASP. (n.d.). File Upload Cheat Sheet. Retrieved from OWASP Cheat Sheet Series:
https://cheatsheetseries.owasp.org/cheatsheets/File_Upload_Cheat_Sheet.html

OWASP. (n.d.). Input Validation Cheat Sheet. Retrieved from OWASP Cheat Sheet Series:
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.ht
ml

OWASP. (n.d.). LLM Prompt Injection Prevention Cheat Sheet. Retrieved from OWASP
Cheat Sheet Series:
https://cheatsheetseries.owasp.org/cheatsheets/LLM_Prompt_Injection_Preventio
n_Cheat_Sheet.html

OWASP. (n.d.). Secrets Management Cheat Sheet. Retrieved from OWASP Cheat Sheet
Series:
https://cheatsheetseries.owasp.org/cheatsheets/Secrets_Management_Cheat_Sh
eet.html

OWASP. (n.d.). XSS Filter Evasion Cheat Sheet. Retrieved from OWASP Cheat Sheet Series:
https://cheatsheetseries.owasp.org/cheatsheets/XSS_Filter_Evasion_Cheat_Sheet
.html

PagerDuty. (n.d.). Incident Response. Retrieved from PagerDuty:
https://response.pagerduty.com/

Perrone, P. (15 Apr, 2025). MCP Is a Security Nightmare — Here’s How the Agent Security
Framework Fixes It. Retrieved from Medium: https://medium.com/data-science-
collective/mcp-is-a-security-nightmare-heres-how-the-agent-security-framework-
fixes-it-fd419fdfafde

Perrot, C., Tanke, M. L., Roy, M., & Sachs, R. (9 Apr, 2025). Implement human-in-the-loop
confirmation with Amazon Bedrock Agents. Retrieved from AWS:
https://aws.amazon.com/blogs/machine-learning/implement-human-in-the-loop-
confirmation-with-amazon-bedrock-agents/

Personal Data Protection Commission Singapore. (1 Mar, 2024). Advisory Guidelines on use
of Personal Data in Al Recommendation and Decision Systems. Retrieved from
PDPC: https://www.pdpc.gov.sg/guidelines-and-consultation/2024/02/advisory-
guidelines-on-use-of-personal-data-in-ai-recommendation-and-decision-systems

0
>
[55]
=
(2
>
(2}
<
[}
=
o
2
O
L
(2}
Z
O
=
2
[a)
P4
[51]
[a)
[a)
<
4
<C
<
e
=
Z
L
O
<
)
Z
o
2
O
L
(%)

Personal Data Protection Commission Singapore. (24 Jul, 2024). Guide to Basic
Anonymisation. Retrieved from PDPC: https://www.pdpc.gov.sg/-
/media/files/pdpc/pdf-files/advisory-guidelines/guide-to-basic-anonymisation-
(updated-24-july-2024).pdf

Personal Data Protection Commission Singapore. (14 Dec, 2024). Guide to Data Protection
Practices for ICT Systems. Retrieved from PDPC: https://www.pdpc.gov.sg/-
/media/files/pdpc/pdf-files/other-guides/tech-omnibus/guide-to-data-protection-
practices-for-ict-systems.pdf

Promptfoo. (n.d.). Promptfoo: LLM evals & red teaming. Retrieved from Github:
https://github.com/promptfoo/promptfoo

Python Code Quality Authority. (n.d.). Bandit. Retrieved from
https://bandit.readthedocs.io/en/latest/

Rasmussen, P., Paliychuk, P., Beauvais, T., Ryan, J., & Chalef, D. (20 Jan, 2025). Zep: A
Temporal Knowledge Graph Architecture for Agent Memory. Retrieved from arxiv:
https://arxiv.org/abs/2501.13956

Rehberger, J. (2 May, 2025). MCP: Untrusted Servers and Confused Clients, Plus a Sneaky
Exploit. Retrieved from Embrace The Red:
https://embracethered.com/blog/posts/2025/model-context-protocol-security-
risks-and-exploits/

Rehberger, J. (n.d.). Trust No Al: Prompt Injection Along The CIA Security Triad. Retrieved
from https://arxiv.org/pdf/2412.06090

Rose, S., Borchert, O., Mitchell, S., & Connelly, S. (Aug, 2020). Special Publication 800-207
Zero Trust Architecture. Retrieved from NIST:
https://nvipubs.nist.gov/nistpubs/specialpublications/NIST.SP.800-207.pdf

Sapkota, R., Roumeliotis, K. I., & Karkee, M. (28 May, 2025). Al Agents vs. Agentic Al: A
Conceptual Taxonomy, Applications and Challenges. Retrieved from arxiv:
https://arxiv.org/abs/2505.10468

Scarfone, K., Souppaya, M., Cody, A., & Orebaugh, A. (n.d.). Special Publication 800-115
Technical Guide to Information Security Testing and Assessment. Retrieved from
NIST: https://csrc.nist.gov/pubs/sp/800/115/final

Semgrep, Inc. (n.d.). Semgrep. Retrieved from GitHub:
https://github.com/semgrep/semgrep

Shah, D. (4 Jun, 2025). Introduction to Training Data Poisoning: A Beginner’s Guide.
Retrieved from Lakera: https://www.lakera.ai/blog/training-data-poisoning

Snyk. (Jun, 2025). Snyk Open Source. Retrieved from Snyk User Docs:
https://docs.snyk.io/scan-with-snyk/snyk-open-source

0
>
[55]
=
(2
>
(2}
<
[}
=
o
2
O
L
(2}
Z
O
=
2
[a)
P4
[51]
[a)
[a)
<
4
<C
<
e
=
Z
L
O
<
)
Z
o
2
O
L
(%)

Souppaya, M., Scarfone, K., & Dodson, D. (Feb, 2022). Special Publication 800-218 Secure
Software Development Framework (SSDF) Version 1.1. Retrieved from NIST:
https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-218.pdf

Stryker, C. (2025). What is agentic Al? Retrieved from IBM:
https://www.ibm.com/think/topics/agentic-ai

Surapaneni, R., Jha, M., Vakoc, M., & Segal, T. (9 Apr, 2025). Announcing the Agent2Agent
Protocol (A2A). Retrieved from Google for Developers:
https://developers.googleblog.com/en/a2a-a-new-era-of-agent-interoperability/

The Linux Foundation. (n.d.). Supply-chain Levels for Software Artifacts. Retrieved from
SLSA: https://slsa.dev/

The OWASP Foundation. (July, 2017). OWASP Code Review Guide. Retrieved from OWASP:
https://owasp.org/www-project-code-review-guide/

The Vulnerable MCP Project. (2025). The Vulnerable MCP Project. Retrieved from
https://vulnerablemcp.info/

tl;dr sec. (Feb, 2025). prompt-injection-defenses. Retrieved from GitHub:
https://github.com/tldrsec/prompt-injection-defenses

traceloop. (n.d.). OpenLLMetry. Retrieved from GitHub:
https://github.com/traceloop/openlimetry

UK Al Secuity Institute, Arcadia Impact, Vector Institute. (n.d.). Inspect Evals. Retrieved
from https://ukgovernmentbeis.github.io/inspect_evals/

UK National Cyber Security Centre. (12 Oct, 2023). Supply Chain Guidance. Retrieved from
NCSC: https://www.ncsc.gov.uk/collection/supply-chain/guidance

UK National Cyber Security Centre. (7 Nov, 2024). Vulnerability Disclosure Toolkit.
Retrieved from NCSC: https://www.ncsc.gov.uk/information/vulnerability-
disclosure-toolkit

UlMuram, F., Tran, H., & Zdun, U. (1 Apr, 2017). Systematic Review of Software Behavioral
Model Consistency Checking. Retrieved from
https://www.researchgate.net/publication/316938485_Systematic_Review_of_Soft
ware_Behavioral_Model_Consistency_Checking

University of the Sunshine Coast Australia. (n.d.). What are credible sources? Retrieved
from https://libguides.usc.edu.au/credible/web

Wang, C. L., Singhal, T., Kelkar, A., & Tuo, J. (8 Aug, 2025). MI9 - Agent Intelligence Protocol:
Runtime Governance for Agentic Al Systems. Retrieved from arxiv:
https://arxiv.org/abs/2508.03858

Wickramasinghe, S. (18 Mar, 2025). IT & System Availability + High Availability: The Ultimate
Guide. Retrieved from Splunk Blogs:
https://www.splunk.com/en_us/blog/learn/availability.html

Xu, F. F., Song, Y., Li, B., Tang, Y., Jain, K., Bao, M., ... Neubig, G. (19 May, 2025).
TheAgentCompany: Benchmarking LLM Agents on Consequential Real World Tasks.
Retrieved from https://the-agent-company.com/

Yuan, Y., Jiao, W., Wang, W., Huang, J.-t., Xu, J., Liang, T., ... Tu, Z. (23 May, 2025). Refuse
Whenever You Feel Unsafe: Improving Safety in LLMs via Decoupled Refusal
Training. Retrieved from https://arxiv.org/abs/2407.09121

Zaharia, M. A,, Chen, A., Davidson, A., Ghodsi, A., Hong, S. A., Konwinski, A., ... Zumar, C.
(2018). Accelerating the Machine Learning Lifecycle with MLflow. Retrieved from
GitHub: https://github.com/mlflow/mlflow

Zhou, S., Xu, F. F., Zhu, H., Zhou, X., Lo, R., Sridhar, A., . . . Neubig, G. (16 Apr, 2024).
WebArena: A Realistic Web Environment for Building Autonomous Agents. Retrieved
from https://webarena.dev/

0
>
[55]
=
(2
>
(2}
<
[}
=
o
2
O
L
(2}
Z
O
=
2
[a)
P4
[51]
[a)
[a)
<
4
<C
<
e
=
Z
L
O
<
)
Z
o
2
O
L
(%)

