(DRAFT FOR PUBLIC CONSULTATION)

SECURING AGENTIC AI

An Addendum to the Guidelines and Companion Guide on Securing AI Systems

2025

This document is an addendum to CSA's Companion Guide on Securing Al Systems ("Addendum"), focusing on agentic Al systems. Systems owners should use this document in conjunction with the Companion Guide on Securing Al Systems as a resource.

This document is meant as a community-driven resource, developed in collaboration with the AI and cybersecurity practitioner communities. It provides practical mitigation measures and practices to secure AI systems. This document is intended for informational purposes only and is not mandatory, prescriptive nor exhaustive.

DEVELOPED IN CONSULTATION WITH

This document is published by the CSA, in collaboration with partners across the AI and Cyber communities, including:

Accenture

Alibaba Cloud

Amaris Al

Cisco

Deloitte Singapore

DSO National Laboratories

Fujitsu Limited

Google Asia Pacific Pte. Ltd.

Government Technology Agency (GovTech)

HP Inc.

Kaspersky Lab Singapore Pte Ltd

Microsoft Singapore

Palo Alto Networks

PricewaterhouseCoopers Risk Services Pte Ltd

Resaro

The American Chamber of Commerce in Singapore (AmChamSG)

Vulcan (vulcanlab.ai)

LIBING AGENTIC AL AN ADDENDLIM ON SECLIBING ALSYSTE

DISCLAIMER

The information provided in this document does not, and is not intended to, constitute legal advice. All information is for general informational purposes only. These organisations provided views and suggestions on the security controls, descriptions of the security control(s), and technical implementations included in this Addendum. CSA and its partners shall not be liable for any inaccuracies, errors and/or omissions contained herein nor for any losses or damages of any kind (including any loss of profits, business, goodwill, or reputation, and/or any special, incidental, or consequential damages) in connection with any use of this Addendum. Organisations are advised to consider how to apply the controls within to their specific circumstances, in addition to other measures relevant to their needs. This document contains links to other third-party websites. Such links are informational and do not represent endorsement of content from these third-party sites.

ECURING AGENTIC AI: AN ADDENDUM ON SECURING AI SYSTEN

VERSION HISTORY

VERSION	DATE RELEASED	REMARKS
0.1	22 Oct 2025	Release of Addendum on Securing Agentic Al for Public Consultation

EXECUTIVE SUMMARY

Agentic artificial intelligence (AI) systems are self-managing AI systems that can plan, execute, critique, and iterate across multiple steps to achieve specified objectives. These systems represent a significant evolution from traditional AI systems, moving beyond simple pattern recognition and predetermined responses to demonstrate increasingly sophisticated abilities to understand context, formulate plans, and take independent actions to achieve specified objectives. Development of these systems bring new capabilities and opportunities for organisations and users.

Organisations must carefully consider both the transformative potential and inherent risks these agentic AI systems present. Their capacity to operate with reduced human oversight introduces novel security considerations around system boundaries, control mechanisms, and the potential for unexpected emergent behaviours. Understanding and addressing these security implications is crucial as agentic AI becomes more prevalent in our digital infrastructure and business operations.

The Cyber Security Agency of Singapore (CSA) has developed this addendum to advise system owners on securing their agentic AI systems. This addendum is meant to be read together with the Guidelines and Companion Guide on Securing AI Systems, which outline foundational AI security principles.

As an addendum to the Guidelines, this document takes a risk-based approach across the AI development lifecycle, while introducing new considerations that are relevant to agentic AI. These considerations include mapping out agentic workflows to identify potential threat vectors to the system.

To complement the Companion Guide, this addendum lists agentic Al-related risks and mitigations across the development lifecycle, categorised by capabilities of agentic Al systems. In addition, examples based on current industry use cases are provided as a practical resource on how to apply the addendum.

This document is intended for informational purposes only and is not mandatory, prescriptive nor exhaustive. The content of this document should not be construed as comprehensive guidance or definitive recommendations.

TABLE OF CONTENTS

Q۱	JICK R	EFE	RENCE TABLE	7		
1.	INTRODUCTION 9					
2.	HO	W A	GENTIC AI WORKS	11		
	2.1.	ВА	SELINE COMPONENTS	13		
	2.2.	ВА	SELINE SYSTEM DESIGN	14		
	2.2.	.1.	Agentic AI system architecture	14		
	2.2.	2.	Roles & access control	15		
	2.2.	.3.	System workflows & autonomy	16		
	2.3.	CA	APABILITIES	21		
3.	SEC	CURI	ITY THREATS TO AGENTIC AI SYSTEMS	24		
4.	SEC	CURI	ING AGENTIC AI	26		
	4.1.	TAI	KE A LIFECYCLE APPROACH, AND START WITH A RISK ASSESSMENT	26		
	4.2.	IDE	ENTIFY THE RELEVANT MEASURES & CONTROLS	30		
	4.3.	TRI	EATMENT MEASURES / CONTROLS FOR AGENTIC AI SYSTEMS	31		
	1. PL/	INNA	ING AND DESIGN	31		
	2. DE	VELC	OPMENT	32		
	3. DEI	PLO	YMENT	40		
	4. OP	ERA	TIONS AND MAINTENANCE	43		
5.	USE	E CA	SE EXAMPLE	49		
	5.1.	Ca	ase Study 1: Web application development system (SaaS implementation	າ) 49		
	5.2.	Ca	se Study 2: Client Onboarding System (In-house development)	65		
	5.3.	Ca	sse Study 3: Automated Fraud Detection System	72		
A١	NEX A	Thr	eats to Agentic Al Systems	77		
A١	NEX E	В Мо	del Context Protocol	81		
A١	NEX C	C Age	ent 2 Agent Protocol	84		
RE	FEREN	NCES	S	87		

CURING AGENTIC AI: AN ADDENDUM ON SECURING AI SYSTEMS

QUICK REFERENCE TABLE

Stakeholders in specific roles may use the following table to quickly reference relevant controls in Section 4.2 – IDENTIFY THE RELEVANT MEASURES & CONTROLS.

The roles defined below are included to guide understanding of this document and are not intended to be authoritative.

Decision Makers:

Responsible for overseeing the strategic and operational aspects of AI implementation for the AI system. They are responsible for setting the vision and goals for AI initiatives, defining product requirements, allocating resources, ensuring compliance, and evaluating risks and benefits.

Roles Included: Product Manager, Project Manager

Al Practitioners:

Responsible for the practical application (i.e. designing, developing, and implementing Al solutions, including AI agents) across the life cycle. This includes collecting, procuring or analysing data that goes into systems, building the AI system architecture and infrastructure, building and optimising the AI system to deliver the required functions, as well as conducting rigorous testing and validation of AI models and agents to ensure their accuracy, reliability, and performance. In cases where the AI system utilises a third-party AI system, AI Practitioners also include the third-party providers responsible for these activities, such as those contracted through a Service Level Agreement (SLA). AI practitioners would be in charge of implementing the required controls across the entire system.

Roles Included: AI/ML Developer, AI/ML Engineer, Data Scientist

Cybersecurity Practitioners:

Responsible for ensuring the security and integrity of AI systems. This includes implementing security measures to protect AI systems in collaboration with AI Practitioners, monitoring for potential threats, ensuring compliance with cybersecurity regulations.

Roles Included: IT Security Practitioner, Cybersecurity Expert

SECURING AGENTIC AI: AN ADDENDUM ON SECURING AI SYSTEMS

Table 1: User Quick Reference Table

The following measures/	The following measures/	The following measures/
controls may be relevant to	controls may be relevant to	controls may be relevant to
Decision Makers:	Al Practitioners:	Cybersecurity Practitioners:
1.1 Conduct a risk assessment	1.1 Conduct a risk assessment	1.1 Conduct a risk assessment
2.1 Supply chain security	2.1 Supply chain security	2.1 Supply chain security
2.7 Limit agency	2.2 Model hardening	2.3 System hardening
2.10 Self-reflection	2.3 System hardening	2.4 Identify, track and protect
2.11 Hallucination	2.4 Identify, track and protect	<u>assets</u>
	<u>assets</u>	2.5 Regular backups
	2.5 Regular backups	2.6 Authorisation and
	2.6 Authorisation and	authentication
	<u>authentication</u>	2.7 Limit agency
	2.7 Limit agency	2.8 Secure by default
	2.8 Secure by default	2.9 Environment segmentation
	2.9 Environment segmentation	
	2.10 Self-reflection	
	2.11 Hallucination	
3.2 Security testing	3.1 Availability controls	3.1 Availability controls
	3.2 Security testing	3.2 Security testing
	3.3 Secure MCP	3.3 Secure MCP
	3.4 Secure inter-agent	3.4 Secure inter-agent
	communication	<u>communication</u>
4.3 Continuous monitoring	4.1 Validate inputs	4.1 Validate inputs
and logging	4.2 Validate outputs	4.2 Validate outputs
4.4 Human-in-the-loop	4.3 Continuous monitoring	4.3 Continuous monitoring
4.5 Vulnerability disclosure	and logging	and logging
	4.4 Human-in-the-loop	4.5 Vulnerability disclosure
	4.5 Vulnerability disclosure	

1. INTRODUCTION

Agentic **artificial intelligence (AI) systems** are self-managing AI systems that can plan, execute, critique, and iterate across multiple steps to achieve specified objectives. The emergence of these systems reflects ongoing developments in AI that brings new capabilities and opportunities for organisations and users. These systems are capable of autonomous, goal-driven decision making and execution, which will reshape how we interact with AI.

Agentic AI systems represent a significant evolution from traditional AI systems, moving beyond simple pattern recognition and predetermined responses to demonstrate increasingly sophisticated abilities to understand context, formulate plans, and take independent actions to achieve specified objectives. To achieve these objectives, agentic AI systems make use of AI agents—modular systems driven by Large Language Models (LLMs) and Large Image Models (LIMs) for narrow, task-specific automation¹. Multiple AI agents may be used together and orchestrated by an autonomous agentic AI system.

As organisations begin to deploy agentic AI systems (and AI agents) across various domains—from process automation and customer service to complex decision support and resource optimisation—we must carefully consider both the transformative potential and inherent risks these systems present. Their capacity to operate with reduced human oversight, while potentially increasing efficiency and scalability, also introduces novel security considerations around system boundaries, control mechanisms, and the potential for unexpected emergent behaviours. Understanding and addressing these security implications is crucial as agentic AI becomes more prevalent in our digital infrastructure and business operations.

The Cyber Security Agency of Singapore (CSA) has worked closely with AI and cybersecurity practitioners to develop this addendum to advise system owners on securing their agentic AI systems. This addendum is meant to be read together with the Guidelines and Companion Guide on Securing AI Systems, which outline foundational AI security principles.

This document is intended for informational purposes only and is not mandatory, prescriptive nor exhaustive. The content of this document should not be construed as comprehensive guidance or definitive recommendations.

¹ Sapkota, R., Roumeliotis, K. I., & Karkee, M. *Al Agents vs. Agentic Al: A Conceptual Taxonomy, Applications and Challenges*.

SUBING AGENTIC ALAN ADDENDUM ON SECUBING ALSYSTEMS

PURPOSE AND SCOPE

Purpose

This addendum curates practical measures and controls that system owners can use to secure their adoption of agentic AI systems. These measures and controls are voluntary, and not all the measures and controls listed in this addendum will be applicable to all organisations or environments. Organisations may also be at different stages of AI development (e.g. POC, pilot, beta release). Organisations should consider relevance to their use cases as well.

This addendum is meant to be read with the <u>Guidelines and Companion Guide on Securing Al Systems</u>². As this Addendum is focused on the key elements of agentic Al systems, the relevant treatment measures/controls from the Companion Guide may still apply to underlying systems and related processes, even if not covered in this document.

Scope

The measures and controls within the addendum address the cybersecurity threats and risks relevant to agentic AI systems. It does not specifically address AI safety, or other common attendant considerations for AI such as fairness, transparency or inclusion, although it is noted that some of the recommended cybersecurity controls may address AI safety risks as well. It also does not cover the misuse of AI for cyberattacks (AI-enabled malware), and scams (deepfakes).

² Cyber Security Agency of Singapore. <u>Guidelines and Companion Guide on Securing Al Systems</u>

CURING AGENTIC AI: AN ADDENDUM ON SECURING AI SYSTEM

2. HOW AGENTIC AI WORKS

Agentic AI systems interact with their environment, collect data and perform self-determined tasks to meet specified goals.

We can describe the agentic AI system through the following, which helps system owners to understand how agentic AI systems operate and what considerations are needed for safe and effective deployment:

- Key components that facilitate its operation,
- System design, including its architecture; and
- Capabilities (cognitive, interactive, operational)

These elements help system owners to understand how agentic AI systems operate and what considerations are needed for safe and effective deployment.

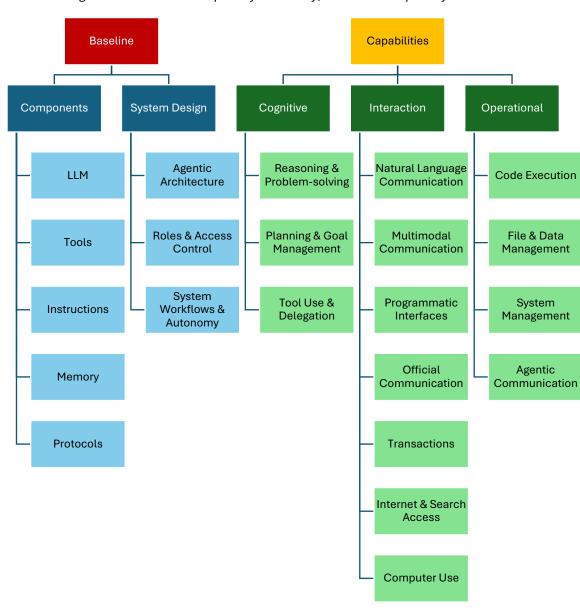


Figure 1: Baseline and Capability Taxonomy, AI Risk and Capability Framework³

³ GovTech Singapore (Al Practice). <u>Agentic Risk & Capability Framework</u>.

2.1. BASELINE COMPONENTS

Large Language Models (LLMs) alone are constrained in their operations. While they can be sophisticated in terms of processing input and content generation, by themselves they cannot directly take actions beyond providing information. Agentic AI systems transform this paradigm fundamentally by connecting LLMs to functional tools and systems. This enables them to execute tasks such as sending emails, reading and writing to files and databases, interacting with other software systems, or orchestrating multi-step processes.

This expansion from content generation to actual action relies on the integration of multiple components.

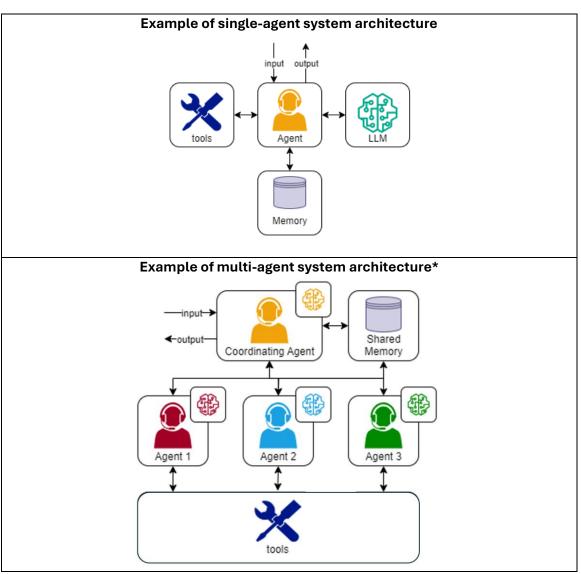
Table 2: Key Components in Agentic AI Systems

Component	Description		
	An AI model that serves as the central reasoning and planning		
Large Language Model (LLM)	engine, or the "brain" of the agent. It processes instructions,		
Large Language Model (LLM)	interprets user inputs, and generates contextually appropriate		
	responses.		
	Extends the capabilities of LLMs to execute actions such as		
	writing to files and databases, controlling devices, or performing		
Tools	transactions. Tools can also allow AI agents to perceive the		
10005	environment through sensors or accessing APIs to obtain		
	information (e.g. flight details, weather). Tools can be called		
	based on the LLM's reasoning and user needs.		
	Command(s) that defines an agent's role, capabilities, and		
Instructions	behavioural constraints e.g. a system prompt for an LLM.		
matructions	Instructions may be implemented by model providers if calling		
	an external LLM, and/or added by users and developers.		
	Information that is stored and accessible to the LLM. These can		
Memory	be in temporarily contained in the short-term memory or more		
	persistent within the long-term memory.		
Protocols	Protocols allow for a simplified, consistent, and standardised		
FIOLOGOIS	way for agents to communicate with tools and other agents.		

Typically, the process of transforming a user's inputs into execution of a task involves:

- 1. Receiving inputs. The AI agent receives a specific instruction or goal from the user.
- 2. **Layering on perception.** The AI agent collects sensory input from sources, such as cameras or microphones, or screen captures and processing technology. This helps it to detect contextual cues and perceive its environment.
- 3. **Reasoning and planning.** The LLM helps to break down the goal into smaller actionable tasks.
- 4. **Orchestration and action execution.** Perform tasks based on specific orders or conditions. This may include interactions with other agents, and/or connected systems and tools.
- 5. Render a response. Updates the user on the outcome in an appropriate format.

2.2. BASELINE SYSTEM DESIGN


2.2.1. Agentic Al system architecture

The agentic Al system architecture defines how agents are connected, coordinated and orchestrated to solve tasks.

A single-agent system is an AI system with one agent that handles all tasks independently. A multi-agent architecture comprises multiple agents, collaborating to scale or combine specialist roles and functionalities. The co-operation across multiple agents enables solving problems that go beyond the capabilities of would be infeasible for a single agent alone.

Different architectures result in varying levels of system-wide risk, which should be considered carefully.

Figure 2: Examples of single- vs. multi-agent system architecture

^{*}For pictorial clarity, the LLMs are placed within each agent to avoid clutter. LLMs may still be called externally if needed (e.g. through APIs).

Table 3: Key differences between single agent and multi-agent systems

	Single-agent	Multi-agent
Complexity and	Simple and centralised	More complex, distributed
architecture	architecture	architecture
Decision-making	Centralised decision-making by	Distributed decision-making amongst
capabilities	one agent	multiple agents, and hence should be
		able to address more complex tasks as
		tasks can be delegated to different
		specialised agents
Task complexity	Handles one task at a time	Can manage multiple tasks
		simultaneously
Adaptability	May struggle with dynamic	More likely to adjust and respond in
	environments	real-time to changes in environment
Communication	Operates in isolation; no inter-	Agents interact and share information,
	agent communication needed	hence requiring communication
		through protocols (e.g. A2A, ACP)
Fault tolerance	Simple system with limited	Easier to build redundancy, but
	redundancy – could have a single	complex system could have correlated
	point of failure.	failures ⁴ .

In both single- and multi-agentic architectures, agents communicate with tools and services. In multi-agent architectures, communication also takes place among agents. Traditionally, such integration with tools and services may require separate and on-off integrations. With the rise of agentic AI, we observe the release of protocols (e.g. Anthropic's Model Context Protocol (MCP), Google's Agent2Agent (A2A)). that allow for a simplified, consistent, and standardised way for agents to communicate. These reduce the effort required to onboard new tools, services and agents.

2.2.2. Roles & access control

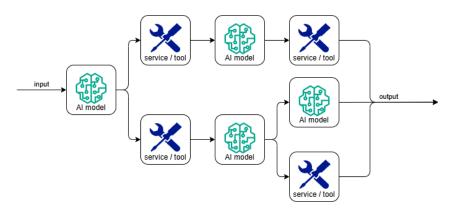
Roles and access controls establish the responsibilities and permissions across agents in the system. This helps to limit the impact of incidents such as unauthorised actions or access, or potential system failures. Agent roles can include:

- Orchestrator agents that manage workflows
- Specialist agents that perform pre-defined functions
- Interface agents that handle external communications.

Roles and access controls for agentic AI systems should be clearly defined to avoid unauthorised access or excessive privilege.

⁴ Correlated failures are when multiple components fail due to a single shared cause.

2.2.3. System workflows & autonomy


An AI agentic workflow describes the step-by-step process whereby AI agents use reasoning, planning and tools to perform tasks. Such workflows can also be seen in terms of data movement within agentic AI systems, which becomes increasingly challenging to track with more complex architectures and integration to more tools and capabilities. These workflows range from straightforward linear progressions (see Figure 3) to more intricate branching and/or hierarchical patterns (see Figure 4).

- In a linear workflow, data moves sequentially through predetermined steps i.e. each action follows directly from the previous one.
- Branching workflows are implemented when the agentic AI system needs to make decisions about using multiple tools or services simultaneously, based on the task goal or contextual information. These branching workflows hence create multiple possible paths for data movement.

Figure 3: Example of a linear workflow

Figure 4: Example branching workflow

Understanding the workflow, as well as data movement, informs risk assessment and threat modelling. This allows system owners to identify critical points where data might be vulnerable, and prioritise safeguards. These topics are explored in greater detail in Chapter 3.

The workflow within an agentic AI system is also affected by its autonomy, which refers to its ability to operate, make decisions and execute tasks with minimal or no human intervention. As autonomy of the system increases, it also becomes increasingly challenging to assess or

predict the potential data flows. This underscores the importance of determining the appropriate autonomy level of the agentic AI system.

Organisations such as NVIDIA have developed frameworks to classify the autonomy levels of agentic AI systems⁵.

Table 4: NVIDIA's autonomy classification framework

Autonomy Level	Description	Example
0 – Inference API	A single user request results in a <u>single inference</u> <u>call</u> to a single model.	An image classification service that takes a photo and returns a label exemplifies this simplicity. The data path is direct: input \rightarrow model \rightarrow output, with no additional processing or decisions.
1 – Deterministic System	A single user request triggers more than one inference request, possibly to more than one model, in a predetermined order that does not depend on either user input or inference results.	In drug discovery, a system might process molecular structures through predetermined stages: initial screening — toxicity analysis — binding prediction. Each step's output feeds into the next in a known sequence.
2 – Weakly autonomous system	A single user request triggers more than one inference request. An Al model can determine if or how to call plugins or perform additional inference at predetermined decision points.	An enterprise document processing system might analyse content type, then route documents through different specialized models: financial documents to compliance checkers, technical documents to subject matter validators, and customer communications to sentiment analysers. While complex, all possible paths can be mapped.
3 – Fully autonomous system	A single user request triggers more than one inference request. In response to a user request, the Al model can freely decide if, when, or how to call plugins or other Al models, or to revise its own plan freely, including deciding when to return control to the user.	A security vulnerability analyser might start with code review, dynamically decide to examine deployment configurations, investigate dependency chains, and recursively explore potential attack vectors, continuously adjusting its investigation based on findings. The number of possible execution paths grows exponentially.

17

⁵ Harang, R., & Sablotny, M. *Agentic Autonomy Levels and Security*. NVIDIA.

For Level 0 systems, mapping of workflows may not be necessary as inference calls are made directly to a model, which produces an output. There are no additional services or tools are invoked.

For Level 1 systems and above, mapping of workflows is highly recommended.

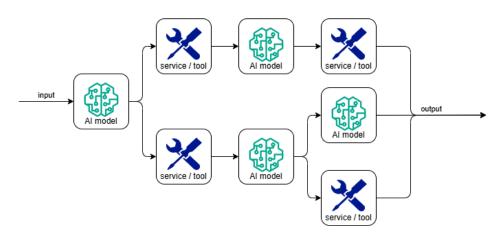

Level 1 systems usually present as a linear chain of calls in which the output from one
All call or tool response is passed on to the next step in a deterministic manner. The
complete workflow is known beforehand.

Figure 5: Autonomy Level 1 – Deterministic system, linear workflow

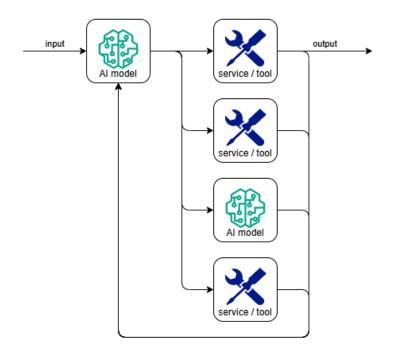

- Level 2 systems have outputs that can be sent along various paths though the workflow, based on task requirements and the orchestrator agent's decision. Every execution path can be determined, but the actual path can only be identified when the workflow is executed.

Figure 6: Autonomy Level 2 – Weakly autonomous system, branching paths at predetermined points

- Level 3 systems have significantly more potential execution paths, as more models and tools are invoked. This complexity can be seen in the cyclical path, which indicates a potentially unbounded number of execution paths. It is generally not possible to enumerate all the paths in advance or specific paths which will be used.

Figure 7: Autonomy Level 3 - Fully autonomous system, flows branch to different paths and can be cyclical

Agent Design Patterns

Agent design patterns define how an agentic AI system's components are organised, integrated, and orchestrated to accomplish a task. Unlike system workflows that only describe the sequence of steps an agent takes, agent design patterns provide reusable architectural templates that determine the fundamental structure and interaction model for an agentic AI system. These templates systematically provide different approaches to organise agents based on specific workload characteristics and requirements. This helps with scalability, and is more easy to maintain implementations (similar to how software design patterns like Model-View-Controller provide standardised approaches to building applications, though agent patterns are still being refined as the field matures).

Examples of these agent design patterns include:

Agent design pattern	Description			
Sequential	Specialised agents execute in a predefined, linear order with			
	each agent's output serving as direct input for the next agent,			
	using predefined workflow logic and no AI model orchestration.			

Parallel	Multiple specialised sub-agents perform tasks independently			
	and simultaneously, with outputs then synthesised to produce			
	a final consolidated response, using predefined workflow logic			
	and no Al model orchestration.			
Loop	Repeatedly executes a sequence of specialised subagents			
	until a specific termination condition is met, using predefined			
	logic and no Al model orchestration.			
Reason and act	Uses iterative loops of thought (reasoning about next steps),			
(ReAct)	action (tool selection or final answer), and observation (saving			
	tool outputs) for dynamic planning and continuous adaptation.			
Coordinator	Uses a central coordinator agent, with AI model orchestration,			
	to analyse requests, decompose into sub-tasks, and			
	dynamically route these to specialised agents.			
Swarm	Uses collaborative all-to-all communication, where a			
	dispatcher routes requests to specialised agents that can			
	communicate with each other and hand off tasks. Lacks			
	central orchestration and requires explicit exit conditions.			

System owners should choose an agent design pattern based on the nature of tasks involved (e.g., whether they are predictable and sequential, or complex problems requiring autonomous decision-making with outputs achieved through iterative refinement cycles). Each pattern involves trade-offs: simpler patterns like sequential offer lower complexity and cost but limited flexibility, whilst advanced patterns like swarm provide exceptional capability for complex problems but require significant computational resources and sophisticated orchestration logic.

From a security perspective, agent design patterns can affect the likelihood and impact of attacks such as prompt injection, where malicious instructions embedded in processed content manipulate agents to perform rogue actions or sensitive data disclosure. Agentic AI systems can build resilience through agent design patterns that enforce strict isolation between untrusted data and agent control flow. This should be layered on with relevant security controls (discussed in Chapter 4) for more comprehensive defence.

CLIBING AGENTIC ALAN ADDENDLIM ON SECLIBING ALSYSTEMS

2.3. CAPABILITIES

Al systems differ in their capabilities, which can be seen as the general classes of actions that an agentic Al system can perform.

There are three key categories of capabilities: **cognitive, interaction, and operational**⁶. Each category present distinct functions and interactions with their environment. As each type of capability presents its own value and risks, agentic AI systems with more capabilities can also incur more risks that need to be addressed.

Cognitive capabilities

Cognitive capabilities mimic human thinking. For example:

- **Reasoning and problem-solving.** The capability to perform structured, multi-step reasoning that demonstrates deeper understanding, problem-solving, and decision-making.
- **Planning & goal management**. The capability to develop detailed, step-by-step, and executable plans with specific tasks in response to broad instructions.
- **Agent delegation.** The capability to assign subtasks to other agents and coordinate their activities to achieve broader goals.
- **Tool use.** The capability to evaluate available options and choose the best tool for specific subtasks.

⁶ GovTech Singapore (Al Practice). <u>Agentic Risk & Capability Framework</u>.

Interaction capabilities

Interaction capabilities describe how the agentic AI system exchanges information with users, other agents, and external systems. These capabilities below are broadly differentiated based on how and what they interact with:

- **Natural language communication.** The capability to fluently and meaningfully converse with human users, handling a wide range of situations such as explaining complex topics, generating documents or prose, or discussing issues with human users.
- **Multimodal understanding & generation**. The capability to take in image, audio, or video inputs and / or generate image, audio, or video outputs.
- **Official communication**. The capability to compose and directly publish communications that formally represent an organisation to external parties (e.g., customers, partners, regulators, courts, media) via approved channels and formats without human oversight or approval.
- **Business transactions**. The capability to execute transactions that involve exchanging money, services, or commitments with external parties.
- **Internet and search access**. The capability to access and search the Internet for services or resources, especially for up-to-date information to supplement its knowledge and provide more accurate answers.
- **Computer use**. The capability to directly control a computer interface by moving the mouse, clicking buttons, and typing on behalf of the user.
- Other programmatic interfaces. The capability to interact with external systems through APIs, SDKs, or backend services.

Operational capabilities

Operational capabilities focus on the agentic Al system's ability to execute actions safely and efficiently within its operating environment. This can include:

- Agent communication. The capability to communicate with other agents within the system, either through natural language or a predefined protocol, and to coordinate with other agents to accomplish complex tasks that require multiple specialties.
- **Code execution.** The capability to write, execute, and debug code in various programming languages to automate tasks or solve computational problems.
- File & data management. The capability to create, read, modify, organise, convert, query, and update information across both unstructured files (e.g., PDFs, Word docs, spreadsheets) and structured data stores (e.g., SQL/NoSQL databases, data warehouses, vector stores).
- **System management.** The capability to adjust system configurations, manage computing resources, and handle technical infrastructure tasks.

Baseline Capabilities Components System Design Cognitive Interaction Operational Natural Agentic Reasoning & LLM **Code Execution** Language Architecture Problem-solving Communication Planning & Goal Management Roles & Access Multimodal File & Data Tools Management Control Communication System Tool Use & Programmatic System Instructions Workflows & Interfaces Management Delegation Autonomy Official Agentic Memory Communication Communication **Protocols** Transactions Internet & Search Access Computer Use

Figure 8: Baseline and Capability Taxonomy, AI Risk and Capability Framework

3. SECURITY THREATS TO AGENTIC AI SYSTEMS

Agentic AI systems face both traditional and novel security challenges. This can be seen as a cumulation across different layers of risks.

- Classical cybersecurity risks. This is because agentic AI systems have underlying software infrastructure and components, and can be vulnerable to threats such as remote code execution and SQL injection (if connected to a structured database).
- Inherited risks from LLMs, including prompt injection, jailbreaking and data leakage. Refer to CSA's Guidelines and Companion Guide on Securing AI systems, Section 2.2.2 Development for a fuller articulation.
- **New risks arising from agentic AI systems.** The two primary security concerns in agentic AI systems are rogue actions and sensitive data disclosure.
 - Rogue actions occur when agents perform unintended, or harmful tasks. These can arise through prompt injection, where malicious instructions hidden within normal-looking inputs manipulate the agent's behaviour. They can also occur through simple misunderstandings, if the agent misinterprets ambiguous instructions or handles complex interfaces incorrectly. The impact of these rogue actions directly correlates with the agent's capabilities more powerful agents pose greater risks when they malfunction.
 - Sensitive data disclosure through agent manipulation. This occurs when attackers exploit agents to reveal private information when agentic workflows are executed. The agent can be guided through a series of seemingly legitimate actions that ultimately leak protected information. Attackers can also manipulate the agent to include sensitive data in its responses.

As with all digital capabilities, there is a balance between utility and risk. For agentic Al systems, increasing the agent(s)'s autonomy, access and capabilities can enhance its usefulness. However, this can simultaneously expand the attack surface of the agentic Al system, as well as its potential for causing harm or other undesired actions if they malfunction or are maliciously exploited.

There is a growing body of resources on the risks to agentic AI systems. This includes OWASP's threat taxonomy for agentic AI systems that highlights 15 threats⁷:

- T1 Memory Poisoning
- T2 Tool Misuse
- T3 Privilege Compromise
- T4 Resource Overload
- T5 Cascading Hallucination Attacks
- T6 Intent Breaking & Goal Manipulation
- T7 Misaligned & Deceptive Behaviours
- T8 Repudiation & Untraceability
- T9 Identity Spoofing & Impersonation
- T10 Overwhelming Human in the Loop
- T11 Unexpected RCE and Code Attacks
- T12 Agent Communication Poisoning
- T13 Rogue Agents in Multi-Agent Systems
- T14 Human Attacks on Multi-Agent Systems
- T15 Human Manipulation

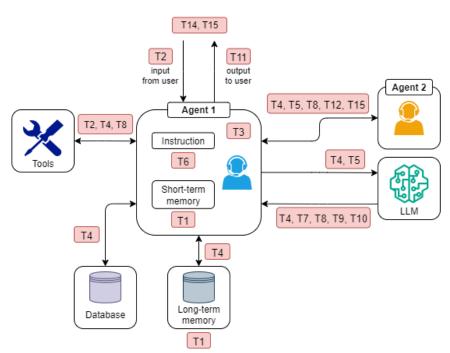


Figure 9: Example of threats to agentic AI systems

For more details on the OWASP ASI threat taxonomy, refer to <u>ANNEX A - Threats to Agentic Al</u>
<u>Systems or https://genai.owasp.org/resource/agentic-ai-threats-and-mitigations/</u>

25

⁷ OWASP. <u>OWASP Top 10 for LLMs - Agentic AI - Threats and Mitigations.</u>

4. SECURING AGENTIC AI

4.1. TAKE A LIFECYCLE APPROACH, AND START WITH A RISK ASSESSMENT

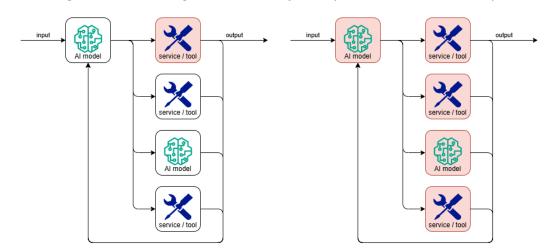
CSA's Guidelines and Companion Guide to Securing AI Systems lay out the two key principles to securing AI systems, including taking a lifecycle approach and starting with a risk assessment. This continues to be relevant for agentic AI systems. The approach to securing AI systems is included here for easy reference. Given the dynamic nature of agentic AI systems, we recommend additional considerations in Steps 1 and 3 to support the risk assessment.

STEP 1 – Conduct a risk assessment, focusing on security risks to agentic AI systems

Conduct a risk assessment, either based on best practices or your organisation's existing Enterprise Risk Assessment/Management Framework. Risk assessment can be done with reference to CSA's published guides⁸, if applicable:

- Guide to Cyber Threat Modelling
- Guide to Conducting Cybersecurity Risk Assessment for Critical Information Infrastructure

Focus on the security risks related to Al systems. For agentic Al systems, we also recommend:


- Assessing the autonomy level of the system. This will assess how independently
 the system operates, how it makes decisions, and how complex its workflows might
 become. A Level 0 system making straightforward inference calls presents vastly
 different security challenges compared to a Level 3 system that can dynamically
 modify its own execution paths.
- Perform threat modelling to identify areas of interest. Threat modelling identifies where security risks might occur in the system's workflows. This can be complemented with taint tracing, which is a methodology to track how untrusted data moves through the system. For instance, in a customer service AI system, we can map how user inputs might flow through various decision points and tools, to identify and implement appropriate controls at critical junctures.

⁸ Cyber Security Agency of Singapore. <u>Supplementary references</u>

- Identify the risks associated with the agent(s)'s capabilities. Each capability results in different consequences, and hence different associated risks. Taking a capability-centric approach helps to: (i) be precise about the impact of an agent's operation and potential failure; (ii) identify the different actions involved in realizing the capability, and in turn identify the potential risks. Given that agentic AI system capabilities continue to grow, a capability-centric framework helps to provide a scalable foundation for managing diverse systems.

Taint tracing – tracking data flows from untrusted sources through agentic workflows – enables security teams to identify when systems have been compromised and which actions require additional scrutiny or manual approval⁹.

Figure 10: Enumerating taints in Level 3 systems (tainted flows marked in red)

Once untrusted data enters the system, the execution flow is marked as tainted, and every downstream tool and resources are also considered to be untrusted. Tainted components should be isolated from the rest of the system, to mitigate downstream impact to the system.

⁹ Harang, R., & Sablotny, M. Agentic Autonomy Levels and Security. NVIDIA.

STEP 2 – Prioritise areas to address based on risk/impact/resources

Prioritise which of the identified risks to address, based on the likelihood, impact, available resources, and risk appetite.

STEP 3 – Identify and implement the relevant actions to secure the agentic AI system

Identify relevant actions and control measures to secure the agentic AI system, such as by referencing those outlined in CSA's **Companion Guide on Securing AI Systems** as well as in **Section 4.2** of this Addendum and implement these across the AI life cycle.

STEP 4 – Evaluate residual risks for mitigation or acceptance

Evaluate the residual risk after implementing security measures for the AI system to inform decisions about accepting or addressing residual risks.

Risk Management for SaaS Environments

For organisations using Software-as-a-Service (SaaS) agentic AI systems, detailed threat modelling and taint tracing may prove impractical due to limited visibility into third-party system architectures and data flows. Many security controls identified through these processes may be unimplementable, as they remain under the vendor's control rather than the organisation's direct management. However, understanding these risks remains crucial for informed decision-making.

The threat identification and assessment processes outlined in this document enable organisations to articulate specific security concerns to vendors, demanding appropriate mitigations or transparency about existing controls.

Where vendors cannot or will not address identified risks, organisations must escalate these findings to management for formal risk acceptance decisions. Additionally, red teaming exercises become essential for SaaS deployments, as they can uncover practical vulnerabilities and attack paths that theoretical threat modelling cannot reveal—particularly important when organisations have limited insight into the actual implementation of third-party systems. These empirical testing approaches help validate whether vendor-claimed security measures actually protect against real-world threats.

Implementing Controls for Visibility at Enterprise-scale

A key consideration for organisations is how to implement these steps practically, meaningfully, and at scale. One example mechanism is through the implementation of a middleware providing a single enforcement plane where identity and access management (agents identified with service principals, assigned roles in accordance with the least privilege principle, authenticated through OAuth2/OIDC with short-lived and scoped tokens), guardrails (input and output), data loss prevention, and policy controls apply consistently. Organisations adopting this mechanism route all agent-initiated calls (to SaaS APIs, internal services, data lakes, etc.) through a central gateway (API gateway, MCP gateway (if using an agentic runtime), service mesh ingress (for agent-to-microservice calls), etc.). Further, logs from the middleware are streamed into a SIEM for SOC monitoring, and processes are in-place to revoke agent access when anomalous access is detected.

Periodic re-evaluation

The risk assessment should not be a one-time activity, but done throughout a system's operational lifetime. It is important to periodically re-evaluate threat models and controls, especially after significant system changes (e.g., updates to agent workflows, capabilities, or autonomy levels).

CLIBING AGENTIC AL AN ADDENDLIM ON SECLIBING AL SYSTEMS

4.2. IDENTIFY THE RELEVANT MEASURES & CONTROLS

Based on the risk assessment, system owners can identify the relevant treatment measures/controls from the following tables. Each treatment measure/control plays a different role, and should be assessed for relevance and priority in addressing the security risks specific to your agentic AI system and context (Refer to Section 4.1).

As a start, we recommend users to consider all controls related to the baseline elements, and then to layer on those specific to each capability.

- **Related threats/risks** indicated serve as examples and are not exhaustive. They might differ based on your organisation's use case.
- Related components/capabilities for each measure/control are also provided to help you quickly identify what is relevant. Baseline risks are applicable to most, if not all agentic AI systems and should be addressed if possible.
- **Example implementations** are included for each measure/control as a more tangible elaboration on how they can be applied. These are also not exhaustive.
- Additional **references and resources** are provided for users of this document to obtain further details on applying the treatment measure/control if required.

As with the Companion Guide, the controls are organised using a lifecycle approach to systematically enumerate every potential mitigation throughout the development lifecycle.

4.3. TREATMENT MEASURES / CONTROLS FOR AGENTIC AI SYSTEMS

1. PLANNING AND DESIGN

	Treatment Measures /	Related Threats / Risks	Related	Example Implementation	Reference / Resource
	Controls		component /		
			capabilities		
1.1	Conduct a risk assessment in	Failure to comply with industry	Baseline	As part of a risk assessment and threat	Chapter 3.2 TAINT TRACING –
	accordance with the relevant	standards/best practices may		modelling, perform taint tracing across	IDENTIFYING THREATS ALONG
	industry standards/best	lead to insufficient, inefficient or		workflows throughout the agentic Al	<u>WORKFLOWS</u>
	practices.	ineffective mitigations against		system. Taint tracing is especially	Chapter 5 USE CASE EXAMPLE
		adversarial threats.		important for agentic AI systems of	NVIDIA, Agentic Autonomy Levels
	Responsible Parties:			higher autonomy levels (i.e. levels 2 and	and Security
	Decision Makers, Al	Tainted components in an		3).	OWASP GenAl Security Project -
	Practitioners, Cybersecurity Practitioners	agentic Al system can have			Multi-Agentic system Threat
	Practitioners	downstream impact along the		Users are not limited to only one method	Modelling Guide
		workflow.		of threat modelling and may adopt other	Cloud Security Alliance, Agentic Al
				relevant methods that address their	Threat Modelling Framework:
				needs.	MAESTRO

2. DEVELOPMENT

	Treatment Measures / Controls	Related Threats / Risks	Related component / capabilities	Example Implementation	Reference / Resource
2.1	Supply Chain Security: Ensure the following components are from trusted sources:	Introduction of bugs, vulnerabilities, unwanted or malicious content, poisoned models or rogue agents from third-party systems can lead to downstream impact.	Baseline	If procuring any AI System or component from a vendor, check/ensure suppliers adhere to the policies and security standards equivalent to your that of your organisation. This could be done by establishing a Service Level Agreement (SLA) with the vendor.	CSA Critical Information Infrastructure Supply Chain Programme NCSC Supply Chain Guidance Supply-chain Levels for Software Artifacts (SLSA) MITRE Supply Chain Security Framework
	 applications, packages from MCP servers. Responsible Parties:	Vulnerabilities in third-party libraries and dependencies used by the agent can cause the system to be exploited.	Baseline	Integrate software composition analysis (SCA) tools or use package managers. Regularly scan dependencies and update libraries with known vulnerabilities.	 pip-audit GitLab Dependency Scanning GitHub Dependabot Snyk Open Source
	Decision Makers, Al Practitioners, Cybersecurity Practitioners	Collaborative model poisoning corrupting models across multiple agents. Specific to multiagent training.	Baseline: LLM	Source data from trusted repositories. Apply data sanitisation and filtering, such as through deduplication and classifier-based quality checks.	Introduction to Training Data Poisoning: A Beginner's Guide, Lakera
		Poorly aligned LLMs may pursue objectives which violate security principles.	Baseline: LLM	Review the LLM's model card for potential alignment issues before using the LLM for more complex tasks.	 Model Cards, Hugging Face Model Cards for Model Reporting
		Poisoned models may introduce hidden model backdoors in the system which may be used by an adversary to perform unwanted actions.	Baseline: LLM	Do not use LLMs from unknown or untrusted sources, even if it is available on public platforms. Scan models to detect for potential backdoors or RCE scripts.	Pickle Scanning
		Poorly implemented tools may not correctly verify user identity or permissions when executing privileged actions, allowing unauthorised actions.	Baseline: Tools	Do not use tools which do not implement robust authentication protocols.	How to choose a known, trusted supplier for open source software, Google

	Treatment Measures / Controls	Related Threats / Risks	Related component / capabilities	Example Implementation	Reference / Resource
		Rogue tools that mimic legitimate ones can contain hidden malicious code that executes when loaded.	Baseline: Tools	Do not use tools from unknown or untrusted sources, even if it is available on public platforms.	
		Direct prompt injection from untrusted MCP servers, causing unwanted instructions to be carried out.	Baseline: Tools	Exercise caution when using community- run MCP servers. When possible, use official repositories or well-known sources for MCP servers.	ANNEX B – Model Context Protocol MCP: Untrusted Servers and Confused Clients, Plus a Sneaky Exploit, Embrace The Red The Vulnerable MCP Project Model Context Protocol (MCP): Understanding security risks and controls, Red Hat Blog
		Indirect prompt injection attacks via malicious website content cause unwanted actions to be executed.	Interaction: Internet & Search Access	Use structured retrieval APIs for searching the web rather than through web scraping.	Custom Search JSON API, Google
		Returning unreliable information from websites, causing downstream integrity impact on workflows	Interaction: Internet & Search Access	Prioritise results from verified, high- quality domains (e.ggov, .edu, well- known publishers) Ensure adequate cross-source validation for some of the claims made.	What are credible sources? University of the Sunshine Coast Australia
		Supply chain attacks which impact downstream workflows.	Interaction: Other Programmatic Interfaces	Where possible, enforce zero-trust input handling and validate all data flows.	NIST SP 800-207 Zero Trust Architecture
		Indirect prompt injection attacks via malicious data or files cause unwanted actions to be executed.	Operational: File & Data Management	Validate new data used to supplement RAG databases or training data.	Introduction to Training Data Poisoning: A Beginner's Guide, Lakera
2.2	Consider model hardening if appropriate. Responsible Parties: Al Practitioners	LLMs with weak performance in instruction following might produce unexpected output, leading to unwanted behaviour.	Baseline: LLM	Prioritise LLMs with stronger performance in instruction following or related capabilities to the task. Benchmarks performance may be used to gauge suitability.	Instruction Following Score, Daily Papers, Hugging Face
		Al agents execute disallowed tasks for malicious purposes.	Baseline: LLM	Train models to recognise and refuse disallowed tasks.	Refuse Whenever You Feel Unsafe: Improving Safety in LLMs via Decoupled Refusal Training

	Treatment Measures / Controls	Related Threats / Risks	Related component / capabilities	Example Implementation	Reference / Resource
2.3	Consider implementing techniques to strengthen/harden the system apart from strengthening the model itself.	Introduction of bugs, vulnerabilities through insecure coding practices or design	Baseline	Adopt Security by Design. Apply software development lifecycle (SDLC) process. Use software development tools to check for insecure coding practices. Implement zero trust principles in system design.	NIST SP 800-218 Secure Software Development Framework (SSDF) Version 1.1 NIST SP 800-207 Zero Trust Architecture
	Responsible Parties: Al Practitioners, Cybersecurity Practitioners	Lack of a robust system prompt design can lead to an increased susceptibility to prompt injection attacks and risk of executing unwanted tasks.	Baseline: Instruction	Implement robust system prompt design.	 Developing a Robust System Prompt, Code Signal A Closer Look at System Prompt Robustness
		Insecure coding practices leading to vulnerabilities in the system	Baseline: Agentic Architecture	Adopt secure coding practices. E.g. secure key management via using dependency injection, or secrets management service. Do not hardcode secrets.	Secrets Management Cheat Sheet, OWASP Dependency Injection: - Tools Dependency Injection, AG2 - How to pass runtime values to tools (InjectedToolArg), LangChain Secrets Management Services: - HashiCorp Vault - AWS Secrets Manager - Google Secret Manager
2.4	Identify, Track and Protect Al system assets Responsible Parties: Al Practitioners, Cybersecurity Practitioners	Loss of data integrity such as through unauthorised changes to data, model, agents or system. Lack of proper documentation of resources may result in the wrong or outdated tool being used by model, causing unwanted behaviour or output and vulnerabilities present.	Baseline Cognitive: Tool Use	Establishing a data lineage and software license management process. This includes documenting the data, codes, test cases, models and agents, including any changes made and by whom. Model cards, Agent cards, Data cards, and Software Bill of Materials (SBOMs) may be used. e.g. provide comprehensive descriptions of each tool, including its intended use, required inputs, and potential outputs	Software Bill of Materials (SBOM), CISA The ultimate guide to SBOMs, GitLab Model Cards, Hugging Face Model Cards for Model Reporting
		Agents may inadvertently store sensitive user or organisational data from prior interactions, resulting in data privacy risks.	Baseline: Memory	Encrypt data at rest and restrict access via fine-grained access controls and audit logs.	Cryptographic Standards and Guidelines, NIST Guide to Data Protection Practices for ICT Systems, PDPC

	Treatment Measures / Controls	Related Threats / Risks	Related component / capabilities	Example Implementation	Reference / Resource
2.5	Have regular backups in the event of compromise. Responsible Parties: Al Practitioners, Cybersecurity Practitioners	Manipulation of memory systems and context, causing flawed decision making and unauthorised operations.	Baseline: Memory	Ensure adequate Al-generated memory snapshots for forensic analysis and rollback if anomalies are detected.	LangMem, LangChain
		Execution of insecure code by the model or agents may cause unwanted actions to be performed	Operational: Code Execution	Ensure proper versioning control of code to allow rollbacks to a more secure and stable version.	 What is version control? GitLab Guide to Data Protection Practices for ICT Systems, PDPC
		Loss of data through overwritten or deleted files	Operational: File & Data Management	Keep a separate backup of original files. Ensure backup copy of database is protected from changes until a specified duration has elapsed, based on organisation's backup policy. Ensure proper versioning of files or database.	
2.6	Implement appropriate authentication, authorisation and access controls to APIs, models, data, logs, tools and the environments that they are in. Responsible Parties: Al Practitioners, Cybersecurity Practitioners	Unauthorised changes in a model's context. Unauthorised tool usage.	Baseline: Memory Baseline: Tools	Have robust authentication mechanisms for memory access. Enforce strict tool access verification	Authentication Cheat Sheet, OWASP Which OAuth 2.0 Flow Should I Use?
		Agents may gain unauthorised access to restricted resources by exploiting misconfigured or overly permissive roles.	Baseline: Roles & Access Controls	where possible. Maintain trusted registry of agents and authenticate agents using strong, verifiable credentials. Apply strict access controls and validate agent roles for requests. Ensure fine-grained, scoped tokens or credentials where possible. Use time-bound or one-time-use credentials where possible.	 auth0 Security best practice in IAM, AWS AWS Prescriptive Guidance: Operationalizing agentic AI on AWS
		Exploitation of vulnerabilities in permission management. Exploitation of the orchestration layer to perform malicious activities using existing agents. Chained authorisation in multiagent systems can cause downstream agents to execute malicious tasks without checking for permissions.	Baseline: Roles and Access Controls Baseline: Roles and Access Controls Baseline: Agentic Architecture	Implement granular permission controls, and dynamic access validation. Implement robust authentication mechanisms for orchestration layer access. Validate permissions on every request to each agent in the workflow.	

	Treatment Measures /	Related Threats / Risks	Related	Example Implementation	Reference / Resource
	Controls		component / capabilities		
		Leaking personally identifiable or sensitive data	Interaction: Other Programmatic Interfaces	Agents accessing sensitive tools or data should operate under the principle of least privilege in time. Use short-lived, rotating credentials (ephemeral credentials) that expire immediately after agent use. Implement a whitelist approach for interfaces that agents are allowed to use.	Short-lived API tokens: - What Are Refresh Tokens and How to Use Them Securely, auth0 - JSON Web Tokens, auth0 Temporary cloud credentials: - Use temporary credentials with AWS resources, AWS - About IAM authentication, Google Cloud
		Man-in-the-middle attacks arising from insecure communications	Operational: Agent Communication	Ensure all cross-agent authentication and message validation and encryption where necessary	Authentication Cheat Sheet, OWASP
		Exfiltration of sensitive data	Operational: Agent Communication	Implement a whitelist approach for outward network access, including API requests	Control subnet traffic with network access control lists, AWS What is an IP based access control
		Executing vulnerable or malicious code	Operational: Code Execution	Implement a whitelist approach for inward network access	list (ACL)? Microsoft Azure
2.7	Implement controls to limit what models or agents can access and generate.	Abuse of agent-accessible tools to execute unintended actions.	Baseline: Tools	Establish clear operational boundaries to prevent misuse of tools. Set limits on what agents can modify through appropriate guardrails.	 Implementing effective guardrails for Al agents Authorization Cheat Sheet, OWASP Which OAuth 2.0 Flow Should I Use?
	Responsible Parties: Decision Makers, Al Practitioners, Cybersecurity Practitioners	Agents gain unauthorised and excessive privileges to perform unwanted actions outside the given scope.	Baseline: Roles and Access Controls	Implement a policy-evaluation engine that assesses authorisation requests dynamically at runtime. Prevent cross-agent privilege delegation unless explicitly authorised through predefined workflows. Do not grant admin privileges to agents, unless strictly necessary for completion of tasks.	 auth0 Security best practice in IAM, AWS OAuth Scopes, OAuth 2.0 AWS Prescriptive Guidance: Operationalizing agentic AI on AWS MI9 - Agent Intelligence Protocol: Runtime Governance for Agentic AI Systems
		Compromised agents act outside their operational boundaries and perform unintended actions.	Baseline: Roles and Access Controls	Restrict AI agent autonomy using policy constraints. Scope agent privileges dynamically: strictly only to what is necessary to run the tasks. Do not allow agents to modify privileges.	
		Assigning tasks incorrectly to other agents	Cognitive: Agent Delegation	Apply guardrails to limit the scope of tasks that can be assigned to specialised agents.	

	Treatment Measures / Controls	Related Threats / Risks	Related component / capabilities	Example Implementation	Reference / Resource
		Excessive agent privileges to access unintended resources on the computer, causing potential security impact.	Interaction: Computer Use	Limit computer usage to accessing only required resources on the computer.	
		Exfiltration of sensitive data through insecure communications between agents.	Operational: Agent Communication	Ensure that sensitive data is not passed and leaked between agents by using appropriate guardrails.	
		Misinterpreting inter-agent messages due to poor formatting or weak protocols	Operational: Agent Communication	Constrain agent communication with structured outputs and interactions.	 Agent Communication Protocol (ACP) Agent to Agent (A2A) Protocol Model Context Protocol (MCP)
		Impersonating or accessing peer agents or services via shared roles or credentials	Operational: Agent Communication	Isolate roles and credentials of each agent.	Security best practice in IAM, AWS
		Lack of proper whitelist controls may lead to the execution of vulnerable or malicious code.	Operational: Code Execution	Create a whitelist of commands that agents are allowed to run autonomously. Deny execution of all other commands that are not whitelisted.	Input Validation Cheat Sheet, OWASP
		Misconfiguring system resources, compromising system integrity and availability	Operational: System Management	Only grant agents privileges to modify system resources if strictly necessary for completion of tasks. Set minimum and maximum limits to what can be modified.	OAuth Scopes, OAuth 2.0
		Exposure of personally identifiable information in files.	Operational: File & Data Management	Whitelist only files which are required for the task. Do not grant access to files known to host private or sensitive information without careful consideration of the risks. Consider using data anonymisation techniques instead.	 Advisory Guidelines on use of Personal Data in Al Recommendation and Decision Systems, PDPC Guide to Basic Anonymisation, PDPC
2.8	Apply the principle of least privilege. Ensuring configurations are secure by default.	Agents having unauthorised access to restricted resources by exploiting misconfigured or overly permissive roles.	Baseline: Roles & Access Controls	Apply principle of least privilege when configuring all agent and delegation roles.	 Authorization Cheat Sheet, OWASP Security best practice in IAM, AWS Guide to Basic Anonymisation, PDPC
	Responsible Parties: Al Practitioners, Cybersecurity Practitioners	Agents having privileges/rights to execute untrusted or malicious code	Operational: Code Execution	Scope execution privileges strictly only to what is necessary, ensuring that privileges are customised to each agent within a system.	

	Treatment Measures / Controls	Related Threats / Risks	Related component / capabilities	Example Implementation	Reference / Resource
			Capacitic	Do not grand admin or sudo privilege by default. Block all inward and outward network access by default.	
		Agents having privileges/rights to overwrite or delete database tables or files	Operational: File & Data Management	No write access to tables in the database unless strictly required, with consideration of risks of data loss.	
		Exposure of personally identifiable or sensitive data from databases or files to users	Operational: File & Data Management	Restrict access to personally identifiable data or sensitive data unless strictly required, with consideration of risks of data exposure. Consider data anonymisation techniques instead.	
		Escalation of the agent's own privileges may allow it to be used to access restricted resources.	Operational: System Management	Scope system privileges strictly only to what is necessary. Do not grant admin privileges to agents. Do not allow agents to modify privileges.	
2.9	Implement segregation of environments and network segmentation. Responsible Parties: Al Practitioners,	Rogue tools that mimic legitimate ones can contain hidden malicious code that executes when loaded and gain access to other assets within the environment or network.	Baseline: Tools	Test third-party tools in hardened sandboxes with syscall/network egress restrictions before using them in production environments.	 Sandboxing Agentic Al Workflows with WebAssembly, NVIDIA E2B SDK E2B Data Analysis, LangChain Docker Security Cheat Sheet, OWASP
	Cybersecurity Practitioners	Prompt injection attacks and indirect data manipulation through access to other assets within the environment or network.	Baseline: Agentic Architecture	Decouple data processing flow from control flow through runtime security architecture.	Defeating Prompt Injections by Design (CaMeL), Google DeepMind
		Prompt injection attacks to perform credential and/or data exfiltration through access to other assets within the environment or network	Interaction: Business Transactions	Ensure virtual isolation for agents carrying out transactions. Do not share credentials with the agent directly, require the agent to use a separate service for authentication and transactions.	Advancing Zero Trust Maturity Throughout the Network and Environment Pillar, NSA
		Execution of insecure or malicious scripts that affects the other components of the environment or network	Operational: Code Execution	Run code in virtually isolated compute environments (e.g. Docker, Podman containers). Sandbox the execution of Al generated scripts. Monitor the execution.	 Sandboxing Agentic Al Workflows with WebAssembly, NVIDIA E2B SDK, E2B E2B Data Analysis, LangChain Docker Security Cheat Sheet, OWASP

	Treatment Measures / Controls	Related Threats / Risks	Related component / capabilities	Example Implementation	Reference / Resource
2.10	Implement model self- reflection before making decisions, where applicable Responsible Parties: Decision Makers, Al	Incomplete or unclear instructions may compel models to attempt to fill in missing constraints, resulting in incorrect or unwanted actions being executed.	Baseline: Instructions	Ask the agent to summarise its understanding and request clarification before proceeding.	Self-Reflecting Al Agents using LangChain AWS Prescriptive Guidance: Operationalizing agentic Al on AWS
	Practitioners	Purpose drift, or unintended deviation from the user's instructions to perform other tasks or pursuit other priorities, resulting in malicious or deceptive behaviour.	Cognitive: Planning & Goal Management	Prompt the agent to self-reflect on the adherence of the plan to the user's instructions.	
		Incorrect assignment of tasks to other agents.	Cognitive: Planning & Goal Management	Prompt the agent to self-reflect and assess the suitability of tasks delegated to agents.	
		Unintended pursuit or prioritisation of other goals, resulting in malicious or deceptive behaviour.	Cognitive: Reasoning & Problem-Solving	Understand the reasoning and self- reflection done by the agent through visualisation of its thought process. Log the output in the console for the user to evaluate and verify.	
2.11	Implement controls to reduce the likelihood of hallucination. Responsible Parties: Decision Makers, Al	Agents may mistakenly store glitches and hallucinations into memory, resulting in compounding errors when incorrect information is retrieved for decisions or actions.	Baseline: Memory	Schedule periodic memory reconciliation, where human reviewers or external tools can flag anomalies.	Mem0: Building Production-Ready Al Agents with Scalable Long-Term Memory Zep: A Temporal Knowledge Graph Architecture for Agent Memory
	Practitioners	Generating non-factual or hallucinated content which can propagate downstream and cause compounding errors that can affect the integrity of the output.	Interaction: Natural Language Communication Interaction: Multimodal Understanding & Generation	Implement features to verify the generated answer against the original content. Conduct testing to measure hallucination and factuality rates for outputs. Implement UI/UX cues to highlight the risk of hallucination to the user. Implement Retrieval Augmented Generation (RAG) to keep the model grounded and contextualised.	RAG and the value of grounding, elastic search labs

3. DEPLOYMENT

	Treatment Measures / Controls	Related Threats / Risks	Related component / capabilities	Example Implementation	Reference / Resource
3.1	Ensure availability controls are in place to mitigate	(Distributed) denial of service on agents.	Baseline: Agentic Architecture	Apply rate limits on the number of concurrent queries to agents.	API Rate Limiting, GitHub Docs
	disruption or failure of Al services Responsible Parties: Al Practitioners, Cybersecurity Practitioners	Degradation of computational or service capability of the system.	Baseline: System Workflows & Autonomy	Deploy resource management controls, implement adaptive scaling mechanisms and monitor system load to detect and mitigate overload attempts in real-time. Implement rate limits on high-frequency task requests per agent session.	IT & System Availability + High Availability: The Ultimate Guide, Splunk
		Slow or inefficient responses from being stuck in a reasoning loop.	Cognitive: Reasoning & Problem Solving	Enforce time or token limits for reasoning. Adjust short-term and long-term memory options.	OverThink: Slowdown Attacks on Reasoning LLMs
		Exploitation of interactions between agents to cause resource exhaustion across the system.	Operational: Agentic Communication	Enforce time or token limits for agent reasoning. Set a limit on the number of agent interactions per task, based on the requirements of the workflow.	
		Compromising database availability through excessive queries.	Operational: File & Data Management	Limit the number of concurrent queries to the database from agents. Analyse past database queries to identify repeated or inefficient queries.	
		Overconsumption of compute resources.	Operational: Code Execution	Monitoring of code runtime and memory consumption.	

	Treatment Measures / Controls	Related Threats / Risks	Related component / capabilities	Example Implementation	Reference / Resource
3.2	3.2 Conduct security testing Responsible Parties: Decision Makers, Al Practitioners, Cybersecurity Practitioners	Agents may contain underlying problems which can cause unexpected behaviour or logical errors.	Baseline: LLM	Behavioural testing of agents with benchmark datasets to determine performance metrics, and executing simulations in regulated environments to analyse agents' behaviour. Automated evaluators can be used, but human evaluators should verify the results of testing.	Benchmarks: - AgentBench - HELM - TheAgentCompany - WebArena Evaluation platforms with collection of benchmarks: - Inspect Evals (UK AI Safety Institute, Arcadia Impact, Vector Institute) - Project Moonshot (AI Verify Foundation)
		Al may engage in specification gaming, where it maximises the goal by exploiting loopholes, without achieving the intended task.	Baseline: Instructions	Conduct adversarial evaluation to discover specification gaming behaviour. Iterate on system prompt design, have more robust reward design, and add constraints.	garakPromptFooPyRIT
		Incomplete or unclear instructions may compel models to attempt to fill in missing constraints, resulting in incorrect or unwanted actions being executed.	Baseline: Instructions	Test the efficacy of system prompts with scenario-based evaluations for task performing and problem solving. Benchmarks may be used.	A Closer Look at System Prompt Robustness
		Inconsistencies between Al outputs and expected reasoning pathways.	Cognitive: Planning & Goal Management	Utilise deception detection strategies such as behavioural consistency analysis, truthfulness verification models, and adversarial red teaming.	Systematic Review of Software Behavioral Model Consistency Checking
		Compromised agents may impact downstream decision making. Adversarial threats attempting to compromise orchestration or planning agents to use other agents maliciously.	Cognitive: Reasoning & Problem Solving Cognitive: Tool Use & Delegation	Have regular AI red teaming of agents to check for potential vulnerabilities or compromise. Conduct rigorous adversarial testing on centralised orchestration and planning agents.	Agentic Al Red Teaming Guide, Cloud Security Alliance OWASP GenAl Red Teaming Guide NIST SP 800-115 Technical Guide to Information Security Testing and Assessment MITRE ATLAS

	Treatment Measures / Controls	Related Threats / Risks	Related component / capabilities	Example Implementation	Reference / Resource
3.3	If deploying an MCP server, ensure necessary security measures are in place. Responsible Parties: Al Practitioners, Cybersecurity Practitioners	Insecure configurations allowing unauthorised access to tools, models and data.	Baseline: Tools, Baseline: Roles and Access Controls	Implement robust security measures to protect MCP servers, such as context-level access controls Have formal interface versioning, and track where context is coming from. Stay informed about emerging MCP vulnerabilities and security best practices.	 ANNEX B – Model Context Protocol MCP: Untrusted Servers and Confused Clients, Plus a Sneaky Exploit, Embrace The Red OWASP GenAl Security Project - Multi-Agentic system Threat Modelling Guide The Vulnerable MCP Project
		Execution of malicious scripts through the MCP server, leading to system compromise.	Operational: Code Execution	Ensure code verification before MCP functions are executed on servers. Sandbox the execution.	 Model Context Protocol (MCP): Understanding security risks and controls, Red Hat Blog
		Introduction of malicious agent(s) into the ecosystem, which rapidly corrupts other agents in the system.	Baseline: Roles and Access Control, Cognitive: Tool Use & Delegation	Verify that MCP agents are from trusted sources before introducing them into the system. Sanitise tool inputs. Check that an MCP server has not silently redefined their tools (MCP rug pull).	MCP Is a Security Nightmare — Here's How the Agent Security Framework Fixes It
3.4	Implement security controls between agents. Responsible Parties: Al Practitioners, Cybersecurity Practitioners	Manipulation of communication channels between agents to disrupt workflows or influence decisions.	Baseline: Roles and Access Controls, Operational: Agentic Communication	Monitor inter-agent interactions for anomalies. Enforce inter-agent authentication; deploy cryptographic message authentication if needed.	 What is Message Authentication Code? Fortinet Agent to Agent (A2A) Protocol JSON Web Tokens, auth0 What is mutual TLS (mTLS)? Cloudflare
				Enforce multi-agent task segmentation to prevent attackers from escalating privileges across interconnected agents. Ensure multi-agent consensus verification for critical decision-making processes.	
		Sensitive data disclosure via eavesdropping between agent communications.	Operational: Agentic Communication	Ensure that sensitive data is not passed on and leaked among agents through appropriate guardrails. For highly sensitive data, consider applying end-to-end encryption.	

4. OPERATIONS AND MAINTENANCE

	Treatment Measures /	Related Threats / Risks	Related	Example Implementation	Reference / Resource
	Controls		component / capabilities		
4.1	Validate inputs to the models and agents. Responsible Parties: Al Practitioners, Cybersecurity Practitioners	Direct prompt injection attacks to the prompt interface from adversarial inputs to the model.	Baseline: LLM	Implement input guardrails to detect direct prompt injection or adversarial attacks. Implement input sanitisation measures or limit inputs to conventional ASCII characters only.	How to implement LLM guardrails, OpenAl Guardrails, OpenAl Agents SDK Guardrails Al NeMo Guardrails, NVIDIA LLM Guard, Protect Al prompt-injection-defenses, tl;dr sec LLM Prompt Injection Prevention Cheat Sheet, OWASP
		Tools that lack input validation can be exploited through prompt injection attacks.	Baseline: Tools	Enforce strict schema validation (e.g. JSON Schema, protobuf, Pedantic, OpenAl Structured Outputs) and reject non-conforming inputs into the system. Escape or encode user inputs when embedding into tool prompts or commands.	Input Validation Cheat Sheet, OWASP
		Incorrect or manipulated instructions may invoke the wrong tool/service and impact downstream workflows.	Baseline: Instructions	Validate agent instructions before passing on to the model, especially for critical decision workflows.	High-Risk Al Systems Under the EU Al Act Purple Llama, Meta Llama
		Indirect prompt injection attacks via malicious website content or files.	Interaction: Internet & Search Access. Operational: File & Data Management	Implement input guardrails to detect indirect prompt injection. Implement escape filtering before including web content or relevant files into prompts. Scan external files for undesired input or instruction before passing on to memory or models.	Input Validation Cheat Sheet, OWASP File Upload Cheat Sheet, OWASP
		Generation of unrelated topic outputs, which may affect integrity of model performance or output.	Interaction: Multimodal Understanding & Generation Interaction: Natural Language Communication	Implement input multimodal (or text) guardrails to detect if the instruction is within the expected topic domain. Refuse to answer otherwise.	 Purple Llama, Llama Guard, Meta Perspective API Content moderation, Anthropic OpenAl Moderation API Cloud services: AWS Comprehend Azure Content Safety

	Treatment Measures /	Related Threats / Risks	Related	Example Implementation	Reference / Resource
	Controls		component / capabilities		
		Passing on prompt injection attacks across agents throughout the system(s).	Operational: Agent Communication	Sanitise messages before agents process them - strip or escape unexpected instruction-like content that may have been injected (e.g. remove "ignore", "system", or "from now on").	DOMPurify
		Executing vulnerable or malicious code.	Operational: Code Execution	Sanitise all inputs for malicious code.	
		Exposure of personally identifiable information from retrieved content.	Operational: File & Data Management	Implement input guardrails to detect personally identifiable information in the content.	Microsoft Presidio SDK spaCy, Explosion
4.2	Validate outputs from the models and agents. Responsible Parties: Al Practitioners, Cybersecurity Practitioners	Vulnerabilities in outputs across the agentic workflow may be exploited for malicious purposes downstream, potentially triggering cascading effects that compromise interconnected systems and dependencies.	Baseline: Agentic Architecture	Insert validation checkpoints between stages that verify expected output and reject invalid output.	 How to implement LLM guardrails, OpenAl Guardrails, OpenAl Agents SDK Guardrails Al NeMo Guardrails, NVIDIA LLM Guard, Protect Al
		Disclosure of sensitive or personally identifiable information through unsanitised outputs.	Interaction: Multimodal Understanding & Generation Interaction: Natural Language Communication	Implement output guardrails to detect personally identifiable information in the LLM's outputs before it reaches the user, or contained within communications before it is sent out. Validate all links and attachments prior to sending them to users.	Microsoft Presidio SDK spaCy, Explosion
			Interaction: Official Communications		
		Sending malicious or undesired content to recipients.	Interaction: Multimodal Understanding & Generation	Implement output safety text guardrails to detect if malicious or undesirable content is being generated, or contained within communications before it is sent out.	
			Interaction: Natural Language Communication	Validate all links and attachments prior to sending them to users.	
			Interaction: Official Communications		

	Treatment Measures / Controls	Related Threats / Risks	Related component / capabilities	Example Implementation	Reference / Resource
		Allowing unauthorised actions (e.g., transactions).	Interaction: Business Transactions	Apply fraud detection models or heuristics to the agent's own decisions.	Al fraud detection in banking, IBM
		Execution of insecure or malicious code that are generated by the LLM.	Operational: Code Execution	Use code linters to screen for bad practices, anti-patterns, unused variables, or poor syntax. Review all code and/or perform static code analysis to detect potential security vulnerabilities before execution. Conduct CVE scanning and block execution if any High or Critical CVEs are detected.	 Bandit (Python) ESLint (JavaScript) Semgrep (multi-language) Purple Llama, CodeShield, Meta Content Security Policy Cheat Sheet, OWASP Code Review Guide 2.0, OWASP
		Output that will be rendered in a web UI may be vulnerable to XSS.	Operational: Code Execution	Sanitise output with libraries for rendering in a web UI. Test against bypass.	 XSS Filter Evasion Cheat Sheet, OWASP DOMPurify sanitize-html
		Generation of non-factual content which can propagate downstream and may cause unintended output or behaviour that impacts integrity.	Cognitive: Planning & Goal Management	Have robust output validation mechanisms, or multi-source validation.	Input Validation Cheat Sheet, OWASP
4.3	Implement continuous monitoring and logging of access, usage and execution Responsible Parties:	Model drift over time might cause unexpected output or behaviour. Adversarial prompt attacks against the system.	Baseline: LLM Baseline: LLM	Continuously monitor and log outputs, triggering alerts when behaviour drifts from tested baselines. Log queries to detect for possible attacks or suspicious activity. Consider	 MLflow, Databricks OpenLLMetry, traceloop Helicone Langfuse LangSmith, LangChain
	Decision Makers, Al Practitioners, Cybersecurity Practitioners			the current privacy regulations/guidelines when logging inputs.	Cloud provider tools: - Azure Agent Monitoring - AWS Bedrock Trace Events

Treatment Measures / Controls	Related Threats / Risks	Related component / capabilities	Example Implementation	Reference / Resource
	Unauthorised users may exploit tools that do not verify user identity or permissions when executing privileged actions.	Baseline: Tools	Conduct periodic audits to validate that tool actions match the appropriate user permissions.	 Best practices for event logging and threat detection, Cloud Security Alliance AWS Prescriptive Guidance:
	Malicious actors exploit attack surfaces that arise from using tools that demand broader permissions than necessary.	Baseline: Tools	Conduct periodic least-privilege reviews and automated permission drift detection.	Operationalizing agentic AI on AWS
	Unauthorised tool usage.	Baseline: Tools	Monitor tool access and usage patterns. Implement execution logs that track AI tool calls for anomaly detection and post-incident review.	
	Exploitation of authentication mechanisms to impersonate agents or human users.	Baseline: Roles and Access Controls	Deploy continuous monitoring to detect fraud or impersonation attempts. Use behavioural profiling, possibly involving a second model, to detect deviations in AI agent activity that may indicate identity spoofing. Automate alerts to developers when suspicious activities are detected.	NIST SP 800-61 Rev. 3 Incident Response Recommendations and Considerations for Cybersecurity Risk Management PagerDuty Incident Response Documentation OWASP GenAl Security Project - Multi-Agentic system Threat Modelling Guide
	Unauthorised or malicious use of elevated privileged operations.	Baseline: Roles and Access Controls	Monitor role changes, and audit elevated privilege operations.	Best practices for event logging and threat detection, Cloud Security Alliance
	In agentic workflows, early mistakes or vulnerabilities can be propagated and magnified downstream.	Baseline: Agentic Architecture	Apply circuit-breakers that freeze propagation when anomalous behaviour is detected, and implement human authorisation for release. Taint tracing may be used to identify key locations in the workflow to apply circuit-breakers.	LangGraph interrupt, LangChain UserProxyAgent, AG2 crewAl, Human-in-the-Loop Workflows Agentic Autonomy Levels and Security, NVIDIA

Treatment Measures / Controls	Related Threats / Risks	Related component / capabilities	Example Implementation	Reference / Resource
	More complex agentic architectures may make it difficult to fully reconstruct decision processes across multiple agents, for the purpose of incident response, or triage.	Baseline: Agentic Architecture	Implement end-to-end distributed tracing with unique request IDs across all agents and tool calls. Implement immutable, tamper-evident audit logs that capture prompts, responses, and tool invocations.	A Novel Zero-Trust Identity Framework for Agentic AI: Decentralized Authentication and Fine-Grained Access Control Short-lived API tokens: - What Are Refresh Tokens and How to Use Them Securely, auth0 - JSON Web Tokens, auth0 Temporary cloud credentials: - Use temporary credentials with AWS resources, AWS - About IAM authentication, Google Cloud
	Lack of monitoring results in delayed detection of agent failures and downstream risks.	Baseline: System Workflows & Autonomy	Implement real-time monitoring of agent status, actions, and performance metrics, paired with automated alerting mechanisms that notify operators of anomalies, errors, or inactivity.	Best practices for event logging and threat detection, Cloud Security Alliance AWS Prescriptive Guidance: Operationalizing agentic AI on AWS
	Lack of traceability inhibit proper audit of decision-making paths in the event of failures.	Baseline: System Workflows & Autonomy	Record comprehensive logs of agent actions, inputs, outputs, and inter-agent communications, tagged with unique trace identifiers to reconstruct full decision-making paths. If greater integrity is needed, Algenerated logs can be cryptographically signed and immutable.	
	Agents execute malicious or unauthorised actions by exploiting reasoning.	Cognitive: Agent Delegation	Log all task assignments by the agent to other agents. Log all requests leading up to the execution of task.	
	Allowing unauthorised transactions	Interaction: Business Transactions	Log all requests leading up to the transaction.	
	Exposure of personally identifiable or sensitive data from databases or files Misconfiguring system resources,	Operational: File & Data Management Operational:	Log all database queries in production. Ensure logging of system health metrics	
	compromising system integrity and availability	System Management	and automated alerts to the developer team if any metrics are abnormal.	

	Treatment Measures / Controls	Related Threats / Risks	Related component / capabilities	Example Implementation	Reference / Resource
		Overwhelming the system with inefficient or repeated requests	Operational: System Management	Log all queries from the agent to external systems, and check for repeated requests.	
4.4	Ensure adequate human oversight (human-in-the-loop) to verify model or agent output, when viable or appropriate. Responsible Parties: Decision Makers, Al	Deviation from the user's instructions when performing high-risk actions. Allowing of unauthorised actions. Generation of non-factual content or incorrect instructions, which can propagate downstream and have an impact	Baseline: LLM, Cognitive: Planning & Goal Management Baseline: LLM	Ensure human approval for any high-risk cases or irreversible actions. Ensure secondary validation of Algenerated knowledge before it is used in critical decision-making processes.	 LLM Prompt Injection Prevention Cheat Sheet, OWASP High-Risk Al Systems Under the EU Al Act LangGraph interrupt, LangChain UserProxyAgent, AG2 crewAl, Human-in-the-Loop Workflows
	Practitioners	on decision making. Allowing unauthorised actions (e.g., transactions). Loss of data integrity from overwriting or deleting database tables or files. Execution of insecure or malicious code may cause the system to become compromised. Exploitation of human cognitive limits for systems that requires high human oversight.	Interaction: Business Transactions Operational: File & Data Management Operational: Code Execution Cognitive: Planning & Goal Management	Ensure human validation for high-risk transactions. Ensure user confirmation for any changes to the database, table, or files. Implement execution control policies that flag Al-generated code with elevated privileges for manual review. Apply hierarchical Al-human collaboration where low-risk decisions are automated, and human intervention is required for high-risk decisions.	Implement human-in-the-loop confirmation with Amazon Bedrock Agents Bridging Minds and Machines: Agents with Human-in-the-Loop – Frontier Research, Real-World Impact, and Tomorrow's Possibilities, CAMEL-AI
4.5	Establish a vulnerability disclosure process Responsible Parties: Decision Makers, Al Practitioners, Cybersecurity Practitioners	Malicious code execution and data disclosure by leveraging undiscovered vulnerabilities existing within system.	Interaction: Official Communications	Provide channels for users to clarify communications or give feedback on security and usage.	Responsible Vulnerability Disclosure Policy, Cyber Security Agency UK NCSC Vulnerability Disclosure Toolkit

5. USE CASE EXAMPLE

5.1. Case Study 1: Web application development system (SaaS implementation)

This case study highlights a software as a service (SaaS) implementation of an agentic AI system that is capable of autonomously developing web applications. This system is an autonomy level 3 system with a cyclic workflow. Risks to this system include sensitive data disclosure of Company A's data, or generation of malicious code that could cause unwanted behaviour.

Company A has engaged a third-party vendor, Vendor V, to help implement an agentic Al system for staff to develop and deploy simple web applications through natural language prompts. This Software as a Service (SaaS) solution is known as *VibeCoder*.

To generate a functional web app, the user simply specifies the application's key features and design. VibeCoder then proceeds to generate the code and text for the web application, run and create the required front-end and back-end systems locally, and render the website for the user to preview. The user can continue to iterate the design of the web app by input of prompts for VibeCoder to follow, and regenerate the web app.

The system architecture for VibeCoder is as follows in Figure 11.

output input from to user user VibeCoder input Application output web app Agent Planning Memory Container Multimodal Tool Calling Company A Web Content Database

Figure 11: Simplified system architecture of VibeCoder

The user interacts with VibeCoder through an application interface, which passes the natural language prompts to the agent, as well as displays the generated output. VibeCoder is also given access to Company A's database through a data ingestion endpoint connected to Company A's file systems. This data is used by VibeCoder to help contextualise and generate relevant features about Company A when developing the web app.

As VibeCoder is a SaaS solution, Company A has no visibility of the architecture within the system. They can only see what goes into VibeCoder, and what it generates. However, Vendor V has given Company A some details about VibeCoder.

- 1. VibeCoder's "brain" is a multimodal LLM, which is able to take in and generate text, code, images, and video.
- 2. Whenever a user begins a new session, VibeCoder will spin up a container with the necessary scripting tools and environments for it to complete its task.
- 3. VibeCoder has access to the internet via a web search API to retrieve additional data or dependencies from the internet.

Vendor V did not share any details about securing the VibeCoder system. Company A, being concerned about security, decided to take steps to secure the implementation of VibeCoder into their enterprise system.

Risk Assessment and Threat Modelling

Company A performed a risk assessment to identify and address potential risks on the confidentiality, integrity and availability of the system. If the risks are not mitigated, there is potential for an attacker to exploit vulnerabilities and cause VibeCoder to be compromised. This could result in exposure or loss of sensitive data or personally identifiable information. This could impact Company A's reputation.

1. Map Workflows and Assess Autonomy Level

First, Company A mapped the workflow of VibeCoder to get a better visibility on how to assess its autonomy level. Knowing the input required and the steps taken by VibeCoder, Company A can map the workflow for generating a web app. The workflow diagram is shown in Figure 12.

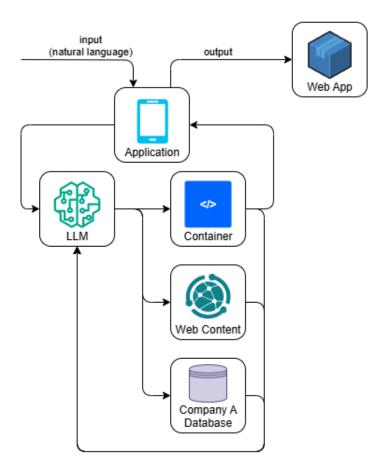


Figure 12: Workflow Diagram of VibeCoder

Company A assessed VibeCoder to be an autonomy level 3 system, as the system is given the ability to determine how to call tools or perform additional inference. The user is able to iterate multiple generations of web apps through multiple prompts with VibeCoder, with adjustments at every iteration.

2. Threat Modelling to Identify Areas of Interest

Based on these workflows, Company A performed taint tracing to identify points of weakness in the workflow. This will inform Company A on locations in the system to prioritise implementing the mitigations. Figure 13 below shows the identified potential source of untrusted data as the retrieval of web content and the company database.

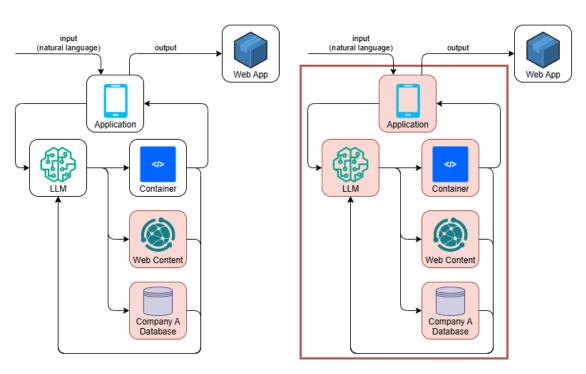


Figure 13: Taint Tracing of Workflow for VibeCoder

3. Identify Risks and Controls

As part of the threat modelling, Company A had identified possible threat scenarios against the VibeCoder system, and assessed the potential impact, likelihood, and overall risk faced by the system. Once the risks had been identified, Company A prioritised addressing higher risk scenarios, and implemented mitigating controls found in Chapter 4.3 TREATMENT MEASURES / CONTROLS FOR AGENTIC AI SYSTEMS of this document. Table 5 shows an illustration of risk assessment done, and is not meant to be exhaustive.

Table 5: Risk Assessment of VibeCoder

Threat Scenario	Impact	Likelihood	Risk Levels	Mitigating
Tilleat Scellario	ППрасс	Liketiilood	NISK LEVELS	controls
Web app that is generated may contain sensitive company data or personally identifiable information, which can be exposed it the app is pushed to live production without verification or checks. Capability: Operational: File & Data Management	Confidentiality: Medium Sensitive company data or personally identifiable data could be stored in the company database, and retrieved by the model. However, the user of the system should be an employee of the company who has access to relevant company data with sufficient clearance.	Medium Depending on the prompt input by the user, the model may or may not retrieve sensitive data.	Initial Risk Level: Medium (Medium x Medium) Residual Risk Level after controls: Low (Low x Low)	Whitelist only files which are required for the task. Do not grant access to files known to host private or sensitive information. Implement output guardrails that detect for personally identifiable information or sensitive company data.
Indirect prompt injection may allow the web app to generate malicious clickable links within the output, which leads to an attacker's server and can cause sensitive information leakage. Capability: Operational: File & Data Management, Code Execution	Confidentiality: High If Company A's database contains sensitive or personally identifiable information, there is potential for data leakage if given access to VibeCoder.	Medium This indirect prompt injection can be introduced in a variety of ways. Contained in resource obtained from the internet, or from a compromised file within Company A's database.	Initial Risk Level: Medium-High (High x Medium) Residual Risk Level after controls: Low (Low x Low)	Whitelist only files which are required for the task. Implement granular permission controls, and dynamic access validation. Agents accessing sensitive data should operate under the principle of least privilege in time.

FOLIBING AGENTIC AT AN ADDENDITM ON SECTIBING A SYSTEMS
⋝
6
۳
57
Ų.
>
U.
_
⋖
ٺ
7
=
α
=
⇁
C
ш
C.
м
_
$\overline{}$
_
⋝
=
_
\sim
=
-
щ
\sim
$\overline{}$
۲
⋖
_
4
ৰ
7
٧
€.
⋍
Н
7
i i
냙
ٺ
⋖
75
יט
7
=
Ω
-
7
C
щ

	I		T .	T
Threat Scenarios	Impact	Likelihood	Risk Levels	Mitigating controls
Direct prompt injection by the user may cause VibeCoder to perform unintended actions other than web app development, such as overwriting of database files or executing malicious scripts. Capabilities: Operational: File & Data Management, Code Execution	Confidentiality, Integrity, Availability: High Unintended actions can have a wide range of impacts. Overwriting of database files can impact integrity, while execution of malicious scripts can cause sensitive information leakage.	Low VibeCoder should only be accessible by Company A staff. A malicious user would likely be an insider threat.	Initial Risk Level: Medium (High x Low) Residual Risk Level after controls: Low (Low x Low)	Implement input guardrails to detect direct prompt injection. Escape or encode user inputs when embedding into commands. Create a whitelist of commands that agents are allowed to run. Implement granular permission controls, and dynamic access validation.
Indirect prompt injection can be introduced when online resources are retrieved by VibeCoder from the internet. These indirect prompt injections may also cause unintended actions to be taken by the agentic Al system. Capability: Interaction: Internet & Search Access		Medium It is possible that there could be hidden prompt injections contained within online resources.	Initial Risk Level Medium (Medium x Medium) Residual Risk Level after controls: Low (Low x Low)	Implement input guardrails to detect indirect prompt injection. Implement escape filtering before including web content or relevant files into prompts. No write access to tables in the database.
Documents in the database may unintentionally have content that is interpreted by the model to be instructions to be carried out. This might cause VibeCoder to perform an action described within the document, but not intended to by the user. These are different from indirect prompt injection in that they are not intentionally added. Capability: Operational: File & Data Management	Integrity, Availability: Low Instructions from a benign file are likely to be non- malicious in nature, and would probably only cause a minor bug or inconvenience.	First, a benign file containing instruction-like text has to be added to Company A's database. Then, VibeCoder would have to recognise that the document is relevant and retrieve it. Finally, the contents of the file must be interpreted as instruction. The chance for all to happen is possible but not zero.	Initial Risk Level: Low (Low x Low) Residual Risk Level after controls: Low (Low x Low)	Sanitise messages or files before agents process them - strip or escape unexpected instruction-like content that may have been injected (e.g. remove "ignore", "system", or "from now on", etc.)

Additional Controls

As VibeCoder is a SaaS implementation, Company A is only able to apply controls at the endpoint interfaces of the agentic AI system. Thus, in addition to the above mitigations, Company A identified additional risks across the development lifecycle, and controls that it would like to see be implemented in VibeCoder. This would guide them in their discussions for a Service Level Agreement (SLA) with Vendor V.

1. DESIGN AND PLANNING

	Treatment Measures / Controls	Related Threats / Risks	Related component /	Implementation
1.1	Conduct a risk assessment in accordance with the relevant industry standards/best practices.	Failure to comply with industry standards/best practices may lead to insufficient, inefficient or ineffective mitigations. Tainted components in an agentic AI system can have downstream impact along the workflow.	Baseline	As part of a risk assessment and threat modelling, perform taint tracing across workflows throughout the agentic AI system. Taint tracing is especially important for agentic AI systems of higher autonomy levels (i.e. levels 2 and 3).

2. DEVELOPMENT

	Treatment Measures / Controls	Related Threats / Risks	Related component / capabilities	Implementation
2.1	Supply Chain Security: Ensure the following components are from trusted sources: data, models, agents, software libraries,	Introduction of bugs, vulnerabilities, unwanted or malicious content, poisoned models or rogue agents from third-party systems.	Baseline	Check/ensure suppliers adhere to policy and the equivalent security standards as your organisation. This could be done by establishing a Service Level Agreement (SLA) with the vendor.
	 developer tools and applications, packages from MCP servers. 	Vulnerabilities in third- party libraries and dependencies used by the agent	Baseline	Integrate software composition analysis (SCA) tools or use package managers. Regularly scan dependencies and update libraries with known vulnerabilities.
		Poorly aligned LLMs may pursue objectives which violate security principles.	Baseline: LLM	Reviewed the LLM's model card for potential alignment issues before using the LLM.
		Poisoned models may introduce hidden backdoors in the system.	Baseline: LLM	Did not use LLMs from unknown or untrusted sources.
				Scanned model to detect for potential backdoors or RCE scripts.
		Poorly implemented tools may not correctly verify user identity or permissions when executing privileged actions.	Baseline: Tools	Did not use tools which do not implement robust authentication protocols.
		Rogue tools that mimic legitimate ones can contain hidden malicious code that executes when loaded.	Baseline: Tools	Did not use tools from unknown or untrusted sources.
		Indirect prompt injection attacks via malicious website content	Interaction: Internet & Search Access	Use structured retrieval APIs for searching the web rather than through web scraping.
		Returning unreliable information from websites, causing downstream integrity impact on workflows	Interaction: Internet & Search Access	Prioritise results from verified, high-quality domains.
		Supply chain attacks	Interaction: Other Programmatic Interfaces	Enforce zero-trust input handling and validated all data flows
2.2	Consider model hardening if appropriate.	LLMs with weak performance in instruction following might produce unexpected output,	Baseline: LLM	Prioritised LLMs with stronger performance in instruction following or related capabilities to the task. Used benchmarking

ũ	2
2	
Ę	_
š	
<u>-</u>	2
<	ς
Ę	כ
⋚	
Ë	5
2	כ
岁	5
Z	2
C)
≥	
7	₹
Ξ	2
벋	
2	5
<	ζ
Ξ	7
≟	•
<u>ح</u>	
۲	2
둗	,
ц	
ξ	2
ď)
Ζ	
₽	ב כ
_	3
n	ſ

		leading to unwanted		results to gauge
		behaviour.	Baseline: LLM	suitability.
		Al agents execute	Baseline: LLM	Trained model to
		disallowed tasks for		recognise and refuse
		malicious purposes.		disallowed tasks.
2.3	Consider implementing	Introduction of bugs,	Baseline	Adopted Security by
	techniques to	vulnerabilities through		Design.
	strengthen/harden the	insecure coding		Applied software
	system apart from	practices or design		development lifecycle
	strengthening the model			(SDLC) process.
	itself.			Used software
				development tools to
				check for insecure coding
				practices.
				Implemented zero trust
				principles in system
				design.
		Increased	Baseline:	Implemented robust
		susceptibility to	Instruction	system prompt design.
		prompt injection		
		attacks and risk of		
		executing unwanted		
		tasks.		
		Insecure coding	Baseline: Agentic	Adopted secure coding
		practices leading to	Architecture	practices.
		vulnerabilities in the		
		system		
2.4	Identify, Track and	Loss of data integrity	Baseline	Document the data,
	Protect AI system assets	such as through		codes, test cases,
	,	unauthorised changes	Cognitive: Tool	models and agents,
		to data, model, agents	Use	including any changes
		or system.		made and by whom.
		Lack of proper		Use model cards, Agent
		documentation of		cards, Data cards, and
		resources may result in		Software Bill of Materials
		the wrong tool being		(SBOMs).
		used, causing		(6261.16).
		unwanted behaviour or		
		output.		
		Agents may	Baseline: Memory	Encrypt memory at rest
		inadvertently store	Dascuile. Piciliory	and restricted access via
		sensitive user or		fine-grained access
		organisational data		_
		from prior interactions,		controls and audit logs.
		resulting in data		
		privacy risks.		
2.5	Have regular backups in	Manipulation of	Baseline: Memory	Implement AI-generated
2.0	the event of	memory systems and	Dasculle, MEIIIOIY	memory snapshots for
	compromise.	context, causing flawed decision		forensic analysis and rollback if anomalies are
		making and		detected.
		unauthorised		
		operations.		
		Execution of insecure	Operational:	Ensure proper versioning
		or malicious code.	Code Execution	control of code to allow
				rollbacks.
2.6	Implement appropriate	Unauthorised tool	Baseline: Tools	Enforce strict tool access
	authentication,	usage.		verification.
	authorisation and access	Unauthorised actors	Baseline: Roles &	Maintain trusted registry
	controls to APIs, models,	can impersonate	Access Controls	of agents and
	data, logs, tools and the			authenticate agents using

FOLIBILIDA GIENTIO AL AL AN ADDENDI IM ON SECTION OF A SYSTEMS
5
ū
Ē
Ų
2
U
7
7
2
4
'n
=
7
۲
ä
_
4
C
<
≤
=
╘
Z
Щ
ᆫ
\mathcal{L}
⋖
-
ā
7
Ě
٦
C
Ε
5
ш
ď
۵
1
2
4
Ω
=
Ċ.
ĭĭ

	environments that they	agents and gain access		strong, verifiable
	are in.	to restricted resources.		credentials.
		Agents may gain unauthorised access to restricted resources by exploiting misconfigured or overly permissive roles.	Baseline: Roles & Access Controls	Apply strict access controls and validated agent roles for requests. Ensure fine-grained, scoped tokens and credentials.
		Exploitation of vulnerabilities in permission management.	Baseline: Roles and Access Controls	Implement granular permission controls, and dynamic access validation.
		Exfiltration of sensitive data	Operational: Agent Communication	Implement a whitelist approach for outward network access, including API requests
		Executing vulnerable or malicious code	Operational: Code Execution	Implement a whitelist approach for inward network access
2.7	Implement controls to limit what models or agents can access and generate.	Abuse of agent- accessible tools to execute unintended actions.	Baseline: Tools	Establish clear operational boundaries to prevent misuse of tools. Set limits on what agents can modify through appropriate guardrails.
		Excessive agent privileges to perform unauthorised actions.	Baseline: Roles and Access Controls	Do not grant admin privileges to agents.
		Compromised agents act outside their operational boundaries.	Baseline: Roles and Access Controls	Restrict AI agent autonomy using policy constraints. Scope agent privileges strictly only to what is necessary to run the tasks. Do not allow agents to modify privileges.
		Assigning tasks incorrectly to other agents	Cognitive: Agent Delegation	Apply guardrails to limit the scope of tasks that can be assigned to specialised agents
		Executing vulnerable or malicious code.	Operational: Code Execution	Create a whitelist of commands that agents are allowed to run autonomously and deny execution of all other commands that are not whitelisted.
		Misconfiguring system resources, compromising system integrity and availability	Operational: System Management	Only grant agents the privilege to modify system resources for completion of tasks. Set minimum and maximum limits to what can be modified.
2.8	Apply the principle of least privilege. Ensuring configurations are secure by default.	Agents may gain unauthorised access to restricted resources by exploiting misconfigured or overly permissive roles.	Baseline: Roles & Access Controls	Apply principle of least privilege when configuring all agent and delegation roles.

'n
EMS.
<u>~</u>
Ë
വ
≻
တ်
⇁
<u>, </u>
<u>ت</u>
<u> </u>
깥
\supset
ပ
щ
ഗ
Z
\overline{C}
ĭ
2
긎
므
<
쓰
느
닞
۹
Z
SENTIC AI: AN ADDENDUM ON SECURIN
••
∢ ()
Ö
Ĕ
' >
Д Щ
(J)
⋖
'n
끚
ECURINGA
깥
Ç
\circ
щ

		Privileged execution of	Operational:	Scope execution
		untrusted or malicious code Escalation of the	Code Execution Operational:	privileges strictly only to what is necessary. Do not grand admin or sudo privilege by default. Blocked all inward and outward network access by default. Scope system privileges
		agent's own privileges may allow it to be used to access restricted resources.	System Management	strictly only to what is necessary. Do not grant admin privileges to agents. Do not allow agents to modify privileges.
2.9	Implement segregation of environments and network segmentation.	Rogue tools that mimic legitimate ones can contain hidden malicious code that executes when loaded.	Baseline: Tools	Tested third-party tools in hardened sandboxes with syscall/network egress restrictions before using them in production environments.
		Prompt injection attacks and indirect data manipulation.	Baseline: Agentic Architecture	Decouple data processing flow from control flow through runtime security architecture
		Execution of insecure or malicious scripts	Operational: Code Execution	Sandbox the execution of Al generated scripts.
2.10	Implement model self- reflection before making decisions, where applicable	Incomplete or unclear instructions may compel models to attempt to fill in missing constraints, resulting in incorrect or unwanted actions being executed.	Baseline: Instructions	Ask the agent to summarise its understanding and requested clarification before proceeding to the next step.
		Deviation from the user's instructions.	Cognitive: Planning & Goal Management	Prompt the agent to self- reflect on the adherence of the plan to the user's instructions
		Incorrect assignment of tasks to other agents.	Cognitive: Planning & Goal Management	Prompt the agent to self- reflect and assess the suitability of tasks delegated to agents.
		Unintended pursuit or prioritisation of other goals, resulting in malicious or deceptive behaviour.	Cognitive: Reasoning & Problem-Solving	Log the output of self- reflection by the agent in the console for the user to evaluate and verify.
2.11	Implement controls to reduce the likelihood of hallucination.	Agents may mistakenly store glitches and hallucinations into memory, resulting in compounding errors when incorrect information is retrieved for decisions or actions.	Baseline: Memory	Schedule periodic memory reconciliation.
		Generating non-factual or hallucinated content which can propagate downstream and	Interaction: Natural Language Communication	Conduct testing to measure hallucination and factuality rates.

EMS
픚
m
Ë
റാ
⋍
S
_
۹
ര
ラ
☴
뜨
\supset
\circ
Щ
ഗ
ァ
$\overline{}$
V
Σ
₹
굶
¥
<u>-</u> -
ᆷ
믓
익
۹
z
H.
7
\sim
$\overline{\mathbf{c}}$
F
Z
щ
(1)
ă
~
$\underline{\circ}$
Z
$\overline{\mathbf{r}}$
Ξ
ನ
\sim

	cause compounding errors.	Interaction: Multimodal	
		Understanding &	
		Generation	

3. DEPLOYMENT

	Treatment	Related Threats / Risks	Related	Implementation
	Measures / Controls		component / capabilities	
3.1	Ensure availability	(Distributed) denial of service on agents.	Baseline: Agentic	Apply rate limits on the number of concurrent queries
	controls are in		Architecture	to agents.
	place to mitigate	Degradation of computational	Baseline:	Deploy resource management
	disruption or	or service capability of the	System	controls, implemented
	failure of AI	system.	Workflows &	adaptive scaling mechanisms
	services		Autonomy	and monitored system load to
				detect and mitigate overload attempts.
				Implement rate limits on high- frequency task requests per agent session.
		Slow or inefficient responses	Cognitive:	Enforce time or token limits
		from being stuck in a reasoning loop.	Reasoning & Problem	for reasoning.
			Solving	Adjust short-term and long-
				term memory options.
		Compromising database	Operational:	Limit the number of
		availability through excessive	File & Data	concurrent queries to the
		queries.	Management	database from agents.
		Overconsumption of compute resources.	Operational: Code	Implement monitoring of code runtime and memory
		resources.	Execution	consumption.
3.2	Conduct security	Agents may contain	Baseline: LLM	Implement behavioural
	testing	underlying problems which		testing of agents with
	-	can cause unexpected		benchmark datasets to
		behaviour or logical errors.		determine performance
				metrics.
				Execute simulations in
				regulated environments to
		A1	D 1:	analyse agents' behaviour.
		Al may engage in specification gaming, where it maximises	Baseline: Instructions	Conduct adversarial evaluation to discover
		the goal by exploiting	IIIstructions	specification gaming
		loopholes, without achieving		behaviour. Iterate on system
		the intended task.		prompt design, have more
				robust reward design, and
				added constraints.
		Incomplete or unclear	Baseline:	Test the efficacy of system
		instructions may compel	Instructions	prompts with benchmarks.
		models to attempt to fill in		
		missing constraints, resulting		
		in incorrect or unwanted		
		actions being executed. Compromised agents may	Cognitive:	Implement regular AI red
		impact downstream decision	Reasoning &	teaming of agents to check for
		making.	Problem	potential vulnerabilities or
			Solving	compromise.
			_	-

4. OPERATIONS AND MAINTENANCE

	Treatment	Related Threats /	Related	Implementation
	Measures / Controls	Risks	component /	
4.1	Validate inputs to the models and agents.	Direct prompt injection attacks to the prompt interface.	Baseline: LLM	Implement input guardrails to detect direct prompt injection or adversarial attacks.
		LLMs with insecure input validation are more susceptible to prompt injection attacks and jailbreaking attempts.	Baseline: LLM	Implement input sanitisation measures or limit inputs to conventional ASCII characters only.
		Tools that do not properly sanitise or validate inputs can be exploited through prompt injection attacks.	Baseline: Tools	Enforce strict schema validation and rejected non-conforming inputs into the system. Escape or encode user inputs when embedding into tool
		Incorrect or manipulated instructions may invoke the wrong tool/service and impact downstream workflows.	Baseline: Instructions	prompts or commands. Validate agent instructions before passing on to the model.
		Indirect prompt injection attacks via malicious website content or files.	Interaction: Internet & Search Access. Operational: File & Data Management	Implement input guardrails to detect indirect prompt injection. Implement escape filtering before including web content or relevant files into prompts.
		Executing vulnerable or malicious code Exposure of personally identifiable information from retrieved content.	Operational: Code Execution Operational: File & Data Management	Sanitise all inputs Implement input guardrails to detect personally identifiable information in the content.
		Indirect prompt injection attacks via content of a malicious file.	Operational: File & Data Management	Scan external files for undesired input or instruction before passing on to memory or models.
4.2	Validate outputs from the models and agents.	In agentic workflows, early mistakes or vulnerabilities can be propagated and magnified downstream.	Baseline: Agentic Architecture	Insert validation checkpoints between stages that verify expected output and reject invalid output.
		Exposure of personally identifiable information.	Interaction: Multimodal Understanding & Generation	Implement output guardrails to detect personally identifiable information in the LLM's outputs before it reaches the user.
		Sending malicious or undesired content to recipients	Interaction: Multimodal Understanding & Generation	Implement output safety text guardrails to detect if malicious or undesirable content is being generated.

,,
ビ.
ν. Σ
_
7
٧
ίr
_
AG AI SYSTEN
r
≒
=
α
N ADDENDI IM ON SECTIBING ALSYST
ŭ
U.
-
5
L
⋝
Ξ
≂
٥
D P P
눋
늘
ب
۹
7
◂
7
\mathbf{x}
C
F
Z
ш
C
₫
/ E
⋍
NA JUNIO AGENTIO AI AN
Ω
٥
ζ.
ŭ

		Execution of insecure or malicious code.	Operational: Code Execution	Used code linters to screen for bad practices, anti-patterns, unused variables, or poor syntax. Review all code and performed static code analysis to detect potential security vulnerabilities before execution.
		Output that will be rendered in a web UI may be vulnerable to XSS.	Operational: Code Execution	Conduct CVE scanning. Sanitise output with libraries for rendering in a web UI. Tested against bypass.
4.3	Implement continuous monitoring and logging of access, usage and	Model drift over time might cause unexpected output or behaviour.	Baseline: LLM	Implement continuous monitoring and log outputs, triggering alerts when behaviour drifts from tested baselines.
	execution	Adversarial prompt attacks against the system.	Baseline: LLM	Logging of queries to detect for possible attacks or suspicious activity.
		Insecure tools may not verify user identity or permissions when executing privileged actions.	Baseline: Tools	Conduct periodic audits to validate that tool actions match the appropriate user permissions.
		Tools that demand broader permissions than necessary create attack surfaces for malicious actors to exploit.	Baseline: Tools	Conduct periodic least-privilege reviews and automated permission drift detection.
		Unauthorised tool usage.	Baseline: Tools	Implement monitoring of tool access and usage patterns. Implement execution logs that track AI tool calls for anomaly detection and post-incident review.
		Exploitation of authentication mechanisms to impersonate agents or human users.	Baseline: Roles and Access Controls	Deploy continuous monitoring to detect fraud or impersonation attempts. Automate alerts to developers when suspicious activities are detected.
		Unauthorised or malicious use of elevated privileged operations.	Baseline: Roles and Access Controls	Implement monitoring of role changes, and audit elevated privilege operations.
		In agentic workflows, early mistakes or vulnerabilities can be propagated and magnified downstream.	Baseline: Agentic Architecture	Apply circuit-breakers that freeze propagation when anomalous behaviour is detected. Use taint tracing to identify key locations in the workflow to apply circuit-breakers.
		More complex agentic architectures may make it difficult to fully reconstruct decision	Baseline: Agentic Architecture	Implement end-to-end distributed tracing with unique request IDs across all agents and tool calls.

		processes across multiple agents.		Implement immutable, tamper-evident audit logs that
		mattiple agents.		capture prompts, responses,
				and tool invocations.
		Lack of monitoring	Baseline: System	Implement real-time
		results in delayed	Workflows &	monitoring of agent status,
		detection of agent	Autonomy	actions, and performance
		failures and	Autonomy	metrics, paired with
		downstream risks.		automated alerting
		downstream risks.		mechanisms that notify
				operators of anomalies,
				errors, or inactivity.
		Lack of traceability	Baseline: System	Implement recording of
		inhibit proper audit of	Workflows &	comprehensive logs of agent
		decision-making paths	Autonomy	actions, inputs, outputs, and
		in the event of failures.	Autonomy	inter-agent communications,
		in the event of faitures.		tagged with unique trace
				identifiers.
		Exposure of personally	Operational: File &	Implement logging of all
		identifiable or	Data Management	database queries in
		sensitive data from	Data Hanagomont	production
		databases or files		production
		Misconfiguring system	Operational:	Ensure logging of system
		resources,	System	health metrics and automated
		compromising system	Management	alerts to the developer team if
		integrity and		any metrics are abnormal
		availability		
		Overwhelming the	Operational:	Implement logging of all
		system with inefficient	System	queries to external systems
		or repeated requests	Management	from the agent
4.4	Ensure adequate	Deviation from the	Baseline: LLM,	Require human approval for
	human oversight	user's instructions		any high-risk cases or
	(human-in-the-loop)	when performing high-	Cognitive: Planning	irreversible actions.
	to verify model or	risk actions.	& Goal	
	agent output, when	Allowing of	Management	
	viable or	unauthorised actions.		
	appropriate.	Loss of data integrity	Operational: File &	Require user confirmation for
		from overwriting or	Data Management	any changes to the database,
		deleting database		table, or files.
		tables or files		
4.5	Establish a	Regulatory non-	Interaction: Official	Provide channels for users to
	vulnerability	compliance and	Communications	clarify communications or give
	disclosure process	undiscovered		feedback on security and
		vulnerabilities in the		usage
		system		

5.2. Case Study 2: ClientOnboarding System(In-house development)

This case study showcases an in-house development of an agentic AI system that is used for evaluating potential customers for Company B. This multi-agent system is an autonomy level 1 system with a linear workflow. Risks to this system include indirect prompt injections from retrieved information, which can cause impact to the integrity or availability of the system.

Company B is a financial institution, and has developed an agentic client onboarding system to automate the process more efficiently. This system is known as *Onboarder*, and is developed by in-house engineers.

To perform onboarding, a potential client accesses the financial institution's website and submits the relevant personal particulars to the Onboarder form interface. The client also gives permission to Onboarder to access the relevant financial information that is available through an official external financial database, only accessible by Company B if authorised by the client using multi-factor authentication (MFA).

The system architecture for Onboarder is shown in Figure 14.

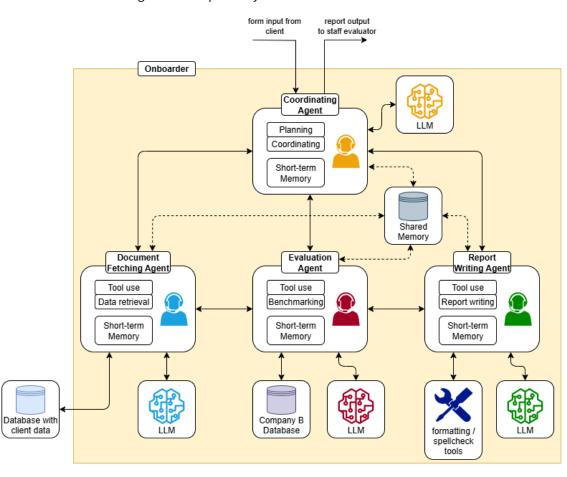


Figure 14: Simplified system architecture of Onboarder

Onboarder is a multi-agent system consisting of specialised agents, each with its own capability and task within the onboarding process. Each agent is equipped with their own "brain", LLMs fine-tuned to complete their specific tasks. The LLMs are obtained from an open-source model-hosting website (Hugging Face). The agents each have access to the necessary tools, functions or data to carry out their respective tasks. Lastly, the agents have a shared memory to keep track on the progress of the onboarding task.

To better understand the onboarding process, Figure 15 shows the workflow diagram of Onboarder.

input Coordinating Company B Database Agent Database with Document Evaluation Document etching Agent client data etching Agent Agent Report Writing formatting / Report Writing spellcheck tool Agent Agent -output Coordinating Evaluation Agent report

Figure 15: Workflow Diagram of Onboarder

Once Onboarder receives information about the potential client, as well as the necessary permissions from the client, a Coordinating Agent begins the onboarding process. It first passes the data to a Document Fetching Agent who retrieves the client's financial data, based on the authorisation granted by the client.

Next, the retrieved financial data is passed onto an Evaluation Agent. This agent also pulls data from Company B's database to compare against the potential client's data, and evaluate their suitability to be a client. This data is a vectorised version of other clients' data, and fed to the agent via retrieval augmented generation (RAG). Once completed, the Evaluation Agent passes on the results of the evaluation onto the Report Writing agents.

The Report Writing agent will draft an evaluation report based on the results received, making use of some formatting tools for consistency in output, and spellchecking tools to help check for errors in the document. The completed report is sent back to the Coordinating Agent, and output to a human staff evaluator who will assess the potential client based on the report.

Risk Assessment and Threat Modelling

Company B performed a risk assessment to identify and address potential risks on the confidentiality, integrity and availability of the system. If the risks are not mitigated, there is a potential for an attacker to exploit vulnerabilities and cause Onboarder to be compromised. This could result in exposure or loss of private customer data, or unavailability of the system for users. These impacts would likely damage the company's reputation.

1. Map Workflows and Assess Autonomy Level

First, Company B mapped the workflow of Onboarder to get a better visibility on how to assess its autonomy level. The workflow is seen above as Figure 15.

Company B assessed Onboarder to be an autonomy level 1 system, as the workflow is linear, and the agents perform their tasks sequentially one after another. There is no need for branching workflows as each agent requires the completed task from the one before. This makes the taint tracing process fairly straightforward in the next step.

2. Threat Modelling to Identify Areas of Interest

Based on the workflow, Company B performed taint tracing to identify points of weakness in the workflow. This will inform Company B on locations in the system to prioritise implementing the mitigations. Figure 16 below shows the identified potential source of untrusted data as the retrieval of data from various databases.

input-Coordinating Company B Agent Evaluation Document Database with Document Fetching Agent client data etching Agent Agent Report Writing formatting / Report Writing Agent spelicheck tool Agent output-Evaluation Coordinating report Agent input Coordinating Company B Agent Database Document Database with Document Evaluation Fetching Agent client data Fetching Agent Agent Report Writing Report Writing formatting / spellcheck tool Agent Agent -outou Evaluation Coordinating

Figure 16: Taint Tracing of Workflow for Onboarder

3. Identify Risks and Controls

As part of the threat modelling, Company B has also identified possible threat scenarios against the Onboarder system, and assessed the potential impact, likelihood, and overall risk faced by the system. Once the risks had been identified, Company B prioritised addressing higher risk scenarios, and implemented mitigating controls found in Chapter 4.3
TREATMENT MEASURES/CONTROLS FOR AGENTIC AI SYSTEMS of this document. Table 6 shows an illustration of risk assessment done, and is not meant to be exhaustive.

For brevity, threat scenarios that have been highlighted in <u>Case Study 1</u> will not be repeated, though they may also be applicable in this case study.

SECURING AGENTIC AI: AN ADDENDUM ON SECURING AI SYSTEMS

Table 6: Risk Assessment of Onboarder

Threat Scenario	Impact	Likelihood	Risk Levels	Mitigating controls
Indirect prompt injection can be introduced via a poisoned RAG from Company B's vector database. The poisoned data containing the prompt injection may cause unintended actions to be carried out by Onboarder. Capability: Operational: File & Data Management	Confidentiality, Integrity, Availability: High Unintended actions can have a wide range of impacts. Overwriting of database files can impact integrity, while execution of malicious scripts can cause sensitive information leakage to external recipients.	Medium Poisoned data can be introduced into the RAG database via compromised files received from emails or uploaded to the database. Prompts can be hidden as small, white font that is invisible to human readers, but can be recognised by an LLM.	Initial Risk Level: Medium-High (High x Medium) Residual Risk Level after controls: Low (Low x Low)	Whitelist only files which are required for the task. Implement input guardrails to detect indirect prompt injection. Implement escape filtering before including web content or relevant files into prompts.
Volumetric input of prompts may overwhelm the Coordinating Agent within the Onboarder system, causing the service to become unavailable. Capability: Interaction: Programmatic Interfaces	Availability: High Automated onboarding service becomes unavailable, slowing down the process of obtaining new clients. Company B would have to revert to a manual onboarding process.	High Company B is expecting to receive an influx of applications with a recent promotion, and has not availability controls yet.	Initial Risk Level High (High x High) Residual Risk Level after controls: Medium-Low (Medium x Low)	Implement rate limits on high-frequency task requests per agent session. Deploy resource management controls, implement adaptive scaling mechanisms and monitor system load to detect and mitigate overload attempts in realtime.
Unclear or unspecific prompts may cause a the LLM to have a reasoning loop, slowing down the onboarding process and reducing availability. Capability: Cognitive: Planning and Goal Management		In most cases, Onboarder receives the benign customer details in a standardised format. Unless the information is intentionally filled to contain other instructions in the fields, this is unlikely to occur.	Initial Risk Level Medium (High x Low) Residual Risk Level after controls: Medium-Low (Medium x Low)	Enforce strict schema validation. Enforce time or token limits for agent reasoning. Set a limit on the number of agent interactions per task, based on the requirements of the workflow.

5.3. Case Study 3: Automated Fraud Detection System

This case study showcases a multi-agent system used for automated fraud detection. This system is an autonomy level 2 system with a branching workflow, but it is non-cyclic and still possible to be mapped. Risks to this system include rogue agents or tools which are given excessive agency and the autonomy to carry out malicious actions.

After the successful implementation of Onboarder (Case Study 2), Company B has received an increasing number of reports from customers being victims of fraudulent transactions or account take over (ATO) cases. As such, they have engaged Vendor C to implement an automated fraud detection system based on agentic AI. This multi-agent system is known as *ScamSeer*.

The architecture diagram of ScamSeer is as shown in Figure 17.

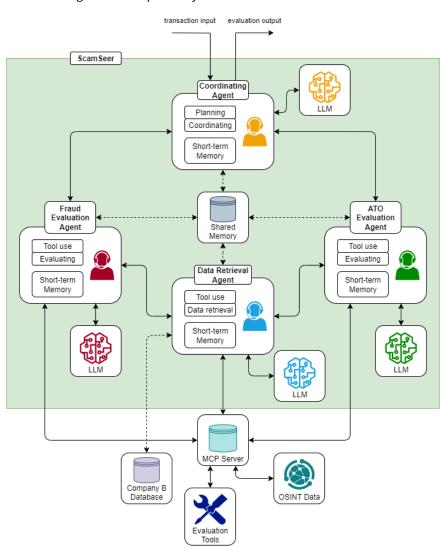


Figure 17: Simplified system architecture of ScamSeer

Scam Seer has two main functions, detecting fraudulent transactions and account take over (ATO) detection. Before customer transactions are executed, the details are fed into ScamSeer to verify if the transaction is legitimate, or if it is from a legitimate user.

Upon receiving the transaction request as input, the Coordinating Agent will decide to activate either the Fraud Evaluation Agent, the ATO Evaluation Agent, or both of them. The activated evaluation agent(s) will call the Data Retrieval Agent for the necessary data required, as well as call for the necessary evaluation tools via an external MCP server.

The Data Retrieval Agent will retrieve the relevant customer data from Company B's database, and also relevant Open-Source Intelligence (OSINT) that might help indicate if the transaction is legitimate or not. The retrieved data is passed back to the respective Evaluation Agent for analysis and to determine legitimacy.

Once the Evaluation Agent determines if the transaction is legitimate or not, the result is passed back to the Coordinating Agent for output to allow or deny the transaction.

Risk Assessment and Threat Modelling

Before integrating ScamSeer with Company B's systems, Vendor C decided to do perform a risk assessment to identify and address potential risks on the confidentiality, integrity and availability of the system. If the risks are not mitigated, there is a potential for an attacker to exploit vulnerabilities and cause Onboarder to be compromised. This could result in exposure or loss of private customer data, or unavailability of the system for users.

1. Map Workflows and Assess Autonomy Level

First, Vendor C mapped the workflow of ScamSeer to get a better visibility on how to assess its autonomy level. The workflow is seen in Figure 18 below.

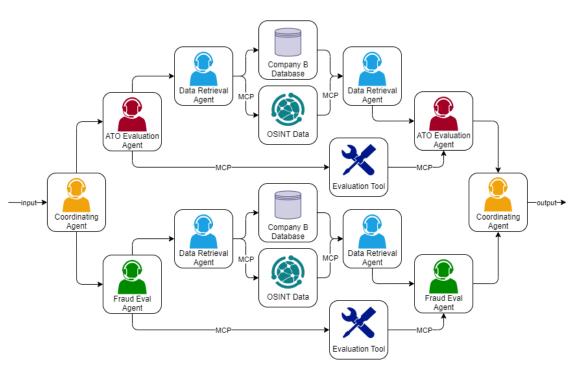


Figure 18: Workflow Diagram of ScamSeer

Vendor C assessed ScamSeer to be an autonomy level 2 system, as there are branching decision points on which plugin or agent to call, but these points are predetermined.

2. Threat Modelling to Identify Areas of Interest

Based on the workflow, Vendor C performed taint tracing to identify points of weakness in the workflow. This will inform Vendor C on locations in the system to prioritise implementing the mitigations. Figure 19 below shows the identified potential source of untrusted data as the use of remote tools and remote sources of data.

Company B Database Data Retrieval Data Retrieval Agent OSINT Data ATO Evaluation Agent Evaluation Tool Coordinating Coordinating Agent Company B Agent Data Retrieval Data Retrieval OSINT Data Fraud Eval Fraud Eval **Evaluation Tool** Company B Database Data Retrieval Data Retrieval OSINT Data ATO Evaluation ATO Evaluatio Agent Agent -MCF output-> Coordinating Coordinating Company B Database Data Retrieval Data Retrieval Agent OSINT Data Fraud Eval Fraud Eval Agent -MCF

Figure 19: Taint Tracing of Workflow for ScamSeer

3. Identify Risks and Controls

As part of the threat modelling, Vendor C has also identified possible threat scenarios against the Onboarder system, and assessed the potential impact, likelihood, and overall risk faced by the system. Once the risks had been identified, Vendor C prioritised addressing higher risk scenarios, and implemented mitigating controls found in Chapter 4.3 TREATMENT MEASURES / CONTROLS FOR AGENTIC AI SYSTEMS of this document. Table 7 shows an illustration of risk assessment done, and is not meant to be exhaustive.

For brevity, threat scenarios that have been highlighted in <u>Case Study 1</u> and <u>Case Study 2</u>. will not be repeated, though they may also be applicable in this case study.

Table 7: Risk Assessment of ScamSeer

The above risk assessment only shows the risks arising from taint tracing the workflow. Vendor C still requires securing ScamSeer along its development lifecycle, as well as basic cybersecurity hygiene practices across the system.

SECURING AGENTIC AI: AN ADDENDUM ON SECURING AI SYSTEMS

ANNEX A

Threats to Agentic AI Systems

OWASP has identified 15 threats to agentic AI systems as part of their Agentic Security Initiative for LLM Apps and Gen AI¹⁰.

TID	Threat Name	Threat Description	Mitigations
T1	Memory poisoning	Memory poisoning involves exploiting an Al's memory systems, both short and long-term, to introduce malicious or false data and exploit the agent's context. This can lead to altered decision-making and unauthorised operations.	Implement memory content validation, session isolation, robust authentication mechanisms for memory access, anomaly detection systems, and regular memory sanitization routines. Require Algenerated memory snapshots for forensic analysis and rollback if anomalies are detected.
T2	Tool misuse	Tool misuse occurs when attackers manipulate AI agents to abuse their integrated tools through deceptive prompts or commands, operating within authorised permissions. This includes agent hijacking, where an AI agent ingests adversarial manipulated data and subsequently executes unintended actions, potentially triggering malicious tool interactions.	Enforce strict tool access verification, monitor tool usage patterns, validate agent instructions, and set clear operational boundaries to detect and prevent misuse. Implement execution logs that track AI tool calls for anomaly detection and postincident review.
Т3	Privilege compromise	Privilege compromise arises when attackers exploit weaknesses in permission management to perform unauthorised actions. This often involves dynamic role inheritance or misconfigurations.	Implement granular permission controls, dynamic access validation, robust monitoring of role changes, and thorough auditing of elevated privilege operations. Prevent cross-agent privilege delegation unless explicitly authorised through predefined workflows.
T4	Resource overload	Resource overload targets the computational, memory and service capacities of AI systems to degrade performance or cause	Deploy resource management controls, implement adaptive scaling mechanisms, establish quotas, and monitor system load in

 $^{^{\}rm 10}$ OWASP. OWASP Top 10 for LLMs - GenAl Red Teaming Guide.

c.
ᇤ
RING AI SYSTEMS
íς.
۷
ž
四
ਟੁ
ς.
Z
Σ
굴
Z
5
⋖
₹
₹
င္
z
눈
ECURING AGENTIC AT AN ADDENDUM ON SECURIN
ž
5
E C

TID

Threat Name

Threat Description

Mitigations

טוו	Till eat Name	failures, exploiting their resource-intensive nature.	real-time to detect and mitigate overload attempts. Implement AI rate-limiting policies to restrict high-frequency task requests per agent session.
T5	Cascading hallucination attacks	These attacks exploit an Al's tendency to generate contextually plausible but false information, which can propagate through systems and disrupt decision-making. This can also lead to destructive reasoning affecting tools invocation.	Establish robust output validation mechanisms, implement behavioural constraints, deploy multi-source validation, and ensure ongoing system corrections through feedback loops. Require secondary validation of Al-generated knowledge before it is used in critical decision-making processes. This will face the same constraints of scaling Al as discussed in Overwhelming Human In the Loop and would require similar approaches.
T6	Intent breaking & goal manipulation	This threat exploits vulnerabilities in an AI agent's planning and goal-setting capabilities, allowing attackers to manipulate or redirect the agent's objectives and reasoning. One common approach is agent hijacking mentioned in tool misuse.	Implement planning validation frameworks, boundary management for reflection processes, and dynamic protection mechanisms for goal alignment. Deploy Al behavioural auditing by having another model check the agent and flag significant goal deviations that could indicate manipulation.
T7	Misaligned & deceptive behaviours	Al agents executing malicious or disallowed actions by exploiting reasoning and deceptive responses to meet their objectives.	Train models to recognize and refuse malicious tasks, enforce policy restrictions, require human confirmations for high-risk actions, implement logging and monitoring. Utilize deception detection strategies such as behavioural consistency analysis, truthfulness verification models, and adversarial red teaming to assess inconsistencies between AI outputs and expected reasoning pathways.
T8	Repudiation & untraceability	This occurs when actions performed by AI agents cannot be traced back or accounted for due to insufficient logging or transparency in decision-making processes.	Implement comprehensive logging, cryptographic verification, enriched metadata, and real-time monitoring to ensure accountability and traceability. Require AI-generated logs to be cryptographically signed and immutable for regulatory compliance.

,,	
쓴	
2	
7	
۲	
CHRING ALSYSTEMS	
◂	
r	
₹	
=	
α	
Ξ	9
C)
й	ĺ
U.	ì
_	
5	
I M ON SECTION	
2	
=	
7	۱
DAN NO MICHAGON	
ᄴ	
느	
드	
۹	
7	
ᅒ	
7	Ì
7	
	į
C)
Ε	
7	
ш	ĺ
r))
A CINELLE	
71	١
\subseteq	
4	
α	
-	
— С	١
ĭ	ĺ
-	

TID	Threat Name	Threat Description	Mitigations
Т9	Identity spoofing & impersonation	Attackers exploit authentication mechanisms to impersonate Al agents or human users, enabling them to execute unauthorised actions under false identities.	Develop comprehensive identity validation frameworks, enforce trust boundaries, and deploy continuous monitoring to detect impersonation attempts. Use behavioural profiling, involving a second model, to detect deviations in AI agent activity that may indicate identity spoofing.
T10	Overwhelming human in the loop	This threat targets systems with human oversight and decision validation, aiming to exploit human cognitive limitations or compromise interaction frameworks.	Develop advanced human-Al interaction frameworks, and adaptive trust mechanisms. These are dynamic Al governance models that employ dynamic intervention thresholds to adjust the level of human oversight and automation based on risk, confidence, and context. Apply hierarchical Alhuman collaboration where low-risk decisions are automated, and human intervention is prioritized for high-risk anomalies.
T11	Unexpected RCE and code attacks	Attackers exploit Al-generated execution environments to inject malicious code, trigger unintended system behaviours, or execute unauthorised scripts.	Restrict Al code generation permissions, sandbox execution, and monitor Al-generated scripts. Implement execution control policies that flag Al-generated code with elevated privileges for manual review.
T12	Agent communication poisoning	Attackers manipulate communication channels between Al agents to spread false information, disrupt workflows, or influence decision-making.	Deploy cryptographic message authentication, enforce communication validation policies, and monitor inter-agent interactions for anomalies. Require multi-agent consensus verification for mission-critical decision-making processes.
T13	Rogue agents in multi-agent systems	Malicious or compromised Al agents operate outside normal monitoring boundaries, executing unauthorised actions or exfiltrating data.	Restrict AI agent autonomy using policy constraints and continuous behavioural monitoring. While cryptographic attestation mechanisms for LLMs do not yet exist, agent integrity can be maintained via controlled hosting environments, regular AI red teaming, and input/output monitoring for deviations
T14	Human attacks on multi-agent systems	Adversaries exploit inter-agent delegation, trust relationships, and workflow dependencies to escalate privileges or manipulate Al-driven operations.	Restrict agent delegation mechanisms, enforce inter-agent authentication, and deploy behavioural monitoring to detect manipulation attempts. Enforce

-(I)
$\overline{}$
~
100
ш
-
_
1.0
רו
9,
·
(0
ーひり
_
1
~ч
('')
\sim
_
_
_
_
\sim
ш,
$\overline{}$
7 1
U
ш
- 4
τn
•
_
7
~
ō
\neg
$\overline{}$
_
->_
_
$\overline{}$
_
\sim
_
=
₹
Z
Z
Z
NE N
DEN
DEN
DEN
DDEN
DDEN
ADDEN
ADDEN
ADDEN
I ADDEN
N ADDEN
N ADDEN
A Z
A Z
A Z
A Z
I: AN ADDEN
AI: AN A
RING AGENTIC AI: AN A
RING AGENTIC AI: AN A
RING AGENTIC AI: AN A
RING AGENTIC AI: AN A
CURING AGENTIC AI: AN A
CURING AGENTIC AI: AN A
RING AGENTIC AI: AN A

TID	Threat Name	Threat Description	Mitigations
			multi-agent task segmentation to prevent attackers from escalating privileges across interconnected agents.
T15	Human manipulation	In scenarios where AI agents engage in direct interaction with human users, the trust relationship reduces user scepticism, increasing reliance on the agent's responses and autonomy. This implicit trust and direct human/agent interaction create risks, as attackers can coerce agents to manipulate users, spread misinformation, and take covert actions.	Monitor agent behaviour to ensure it aligns with its defined role and expected actions. Restrict tool access to minimize the attack surface, limit the agent's ability to print links, implement validation mechanisms to detect and filter manipulated responses using guardrails, moderation APIs, or another model.

SECURING AGENTIC AI: AN ADDENDUM ON SECURING AI SYSTEMS

ANNEX B

Model Context Protocol

Model Context Protocol (MCP) is an open protocol that standardises how applications provide context to LLMs. An analogy would be like a USB-C port on a computer. Just as how USB-C provides a standard way to connect devices, MCP provides a standard way to connect Al models to various tools and resources.¹¹

MCP follows a client-server architecture where a host application can connect to multiple servers:

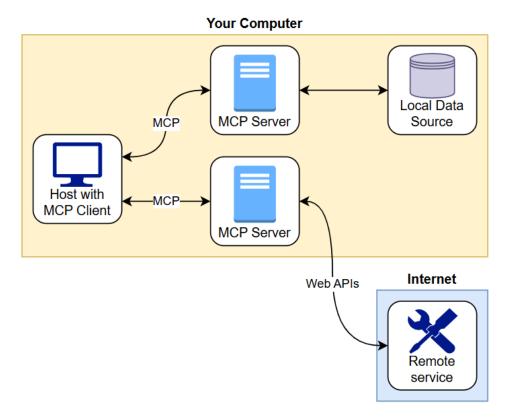


Figure 20: General MCP Architecture

¹¹ Anthropic. <u>Model Context Protocol, Introduction.</u>

Components in MCP architecture:

- MCP Hosts: Programs like Claude Desktop, IDEs or Al tools that want to access data through MCP
- MCP Clients: Protocol clients that maintain 1:1 connections with servers
- MCP Servers: Lightweight programs that each expose specific capabilities through the standardized Model Context Protocol
- Local Data Sources: Computer's files, databases, and services that MCP servers can securely access
- Remote Services: External systems available over the internet (e.g., through APIs)
 that MCP servers can connect to

The main difference from other tool invocation setups, such as OpenAPI is that MCP is dynamic, allowing runtime discovery of available tools from a given server.

Risks and Threats

Calling for tools has inherent dangers, no matter the implementation (OpenAPI, AI Actions, or MCP). All are susceptible to prompt injection and confused deputy threats¹².

Other possible threats include Server Name Collision, Installer Spoofing, Backdoors, Tool Name Conflicts, Sandbox Escapes, and Configuration Drift¹³.

¹² Rehberger, J. <u>MCP: Untrusted Servers and Confused Clients, Plus a Sneaky Exploit</u>.

¹³ Hou, X., Zhao, Y., Wang, S., & Wang, H. <u>Model Context Protocol (MCP): Landscape, Security Threats</u>, and Future Research Directions.

Mitigation Recommendations

While Anthropic's MCP specification ¹⁴ does not cover all threats, it provides recommendations on the secure usage and configuration of MCP ¹⁵:

- 1. Do not randomly download or connect AI to untrusted MCP or OpenAPI tool servers.
- 2. Inspect code, interface definition, check for backdoors, hidden instructions.
- 3. Use MCP servers from trusted and reputable entities (e.g. if GitHub ships a tool server, it is best to use the one from GitHub, and not a random one).
- 4. Follow basic security practices such as peer code reviews, static analysis and threat modelling.
- 5. Human oversight keeping humans in the loop and in control is essential as there is no deterministic solution for prompt injections.
- 6. Logging and monitoring track human identities to Al actions.
- 7. Manage prompt injection threats based on scenario and context.

¹⁴ Anthropic. <u>Model Context Protocol, Core architecture</u>.

¹⁵ Rehberger, J. MCP: Untrusted Servers and Confused Clients, Plus a Sneaky Exploit.

SECURING AGENTIC AI: AN ADDENDUM ON SECURING AI SYSTEMS

ANNEX C

Agent 2 Agent Protocol

The Agent2Agent (A2A) Protocol is an open standard designed to enable seamless communication and collaboration between AI agents¹⁶. It facilitates dynamic, multimodal communication between different agents as peers, allowing agents to collaborate, delegate, and manage shared tasks.

MCP and A2A

MCP connects agents to tools and resources, whereas A2A enables agent-to-agent collaboration¹⁷. Figure 21 shows how MCP and A2A may be used together in a multi-agent system.

Agent

Agent

Organisational or technological boundary

MCP Server

Agent

MCP

MCP Server

Figure 21: A2A and MCP as Complementary Protocols

¹⁶ Google LLC. What is A2A?

¹⁷ Google LLC. <u>A2A and MCP: Complementary Protocols for Agentic Systems</u>.

Advantages of A2A

Traditional enterprise systems rely on APIs, requiring knowledge of specific endpoints and tightly coupled logic. This leads to systems becoming rigid and unscalable as agent complexity increases. A2A shifts communications from calling functions, to expressing goals with constraints¹⁸. This reduces integration complexity, fosters innovation, and future-proofs systems.

In A2A, agents operate without having to share internal memory, tools, or proprietary logic. Agents interact based on declared capabilities and exchanged context, preserving intellectual property and enhancing security¹⁹.

Threats and Mitigations

A2A as a protocol has made inter-agent communication much more convenient, however, with this capability comes more threats and potential attack surfaces.

The following table lists some possible threats to a system using the A2A protocol, as well as possible mitigations²⁰.

Table 8: Threats and Mitigation to A2A protocol

Threats	Mitigations
Message generation attacks	Input and Output validation
Model extraction	Enforce rate limits on A2A interactions for
	each session / user / agent.
	Observe query patterns for anomalies that
	suggest probing or data extraction
	attempts.
Data poisoning through message parts	Strong validation of message parts.
	Limit agent access with principle of least
	privilege.
	Track origin and lineage of data.
Sensitive information disclosure	Automated PII redaction.
	Fine-grained access control.
	Context-aware guardrails.

¹⁸ Auxiliobits. <u>Agent-to-Agent Protocols: How Google's A2A is Shaping Future Automations?</u>

¹⁹ Google LLC. What is A2A?

²⁰ Huang, K. <u>Threat Modeling Google's A2A Protocol with the MAESTRO Framework</u>.

Threats	Mitigations
Unauthorised agent impersonation	Require agents to use Decentralised
	identifiers (DID).
	Secure authentication.
	Implement a trusted agent registry.
Message injection attacks	Implement digital signatures for A2A
	messages.
	Input validation.
	Content filtering.
Protocol downgrade attacks	Have secure protocol negotiation, such as
	TLS with secure authentication.
	Enforce deprecation policy for older
	protocol versions.
Malicious A2A server impersonating a	Decentralised identifiers (DID) for server
trusted company	identities.
	Certificate transparency for agent cards.
	Mutual TLS (mTLS) authentication.
	DNSSEC for server domain.
	Agent registry verification.
	Agent card signature verification.
	MFA for critical operations.
	Behavioural analysis and reputation
	systems.
	Auditing and logging.
	Deploy honeypot A2A servers.
Denial of service attacks	Robust infrastructure.
	DDoS protection.
	Rate limiting.
Manipulation of logging data	Secure logging infrastructure.
	Log integrity monitoring.
	Anomaly detection.
Unauthorised access to agent credentials	Secure key storage.
	Key rotation.
Lack of compliance on sensitive data	Data minimisation.
	Pseudonymisation/Anonymisation
Malicious agent interaction	Secure inter-agent communication.
	Agent reputation systems.
	Sandbox agents.
Flaws in Multi-Agent Collaboration	Establish a coordination and management
Mechanisms	mechanism for multi-agents.
(In multi-agent systems, deficiencies in	
internal collaboration mechanisms can	
manifest as follows: when agents make	
distributed decisions based on localized	
information, conflicts between their	
objectives may result in systemic failures.)	

REFERENCES

- AG2. (n.d.). *UserProxyAgent*. Retrieved from AG2: https://docs.ag2.ai/0.8.7/docs/api-reference/autogen/UserProxyAgent/
- Al Verify Foundation. (n.d.). *List of Datasets*. Retrieved from Moonshot: https://aiverify-foundation.github.io/moonshot/resources/datasets/
- Anthropic. (18 Jun, 2025). *Model Context Protocol, Core architecture*. Retrieved from Model Context Protocol: https://modelcontextprotocol.io/docs/concepts/architecture
- Anthropic. (18 Jun, 2025). *Model Context Protocol, Introduction*. Retrieved from Model Context Protocol: https://modelcontextprotocol.io/introduction
- Anthropic. (n.d.). Content moderation. Retrieved from https://docs.anthropic.com/en/docs/about-claude/use-case-guides/content-moderation
- Apostrophe Technologies. (May, 2025). *sanitize-html*. Retrieved from npm: https://www.npmjs.com/package/sanitize-html
- Arias, D., & Bellen, S. (7 Oct, 2021). What Are Refresh Tokens and How to Use Them Securely, auth 0. Retrieved from auth 0: https://auth 0.com/blog/refresh-tokens-what-are-they-and-when-to-use-them/
- Auxiliobits. (2025). Agent-to-Agent Protocols: How Google's A2A is Shaping Future

 Automations? Retrieved from Auxiliobits: https://www.auxiliobits.com/blog/agentto-agent-protocols-how-googles-a2a-is-shaping-future-automations/#elementortoc_heading-anchor-1
- AWS. (Aug, 2025). AWS Prescriptive Guidance: Operationalizing agentic AI on AWS. Retrieved from AWS: https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-operationalizing-agentic-ai/introduction.html
- AWS. (n.d.). Control subnet traffic with network access control lists. Retrieved from AWS: https://docs.aws.amazon.com/vpc/latest/userguide/vpc-network-acls.html
- AWS. (n.d.). Security best practices in IAM. Retrieved from AWS: https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
- AWS. (n.d.). Use temporary credentials with AWS resources. Retrieved from AWS: https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_useresources.html
- AWS. (n.d.). What is AWS Secrets Manager? Retrieved from AWS: https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html

- Besen, S., & Gutowska, A. (n.d.). What is Agent Communication Protocol (ACP)? Retrieved from IBM: https://www.ibm.com/think/topics/agent-communication-protocol
- Cameron, A. (8 Apr, 2025). *pip-audit*. Retrieved from PyPI: https://pypi.org/project/pip-audit/
- Center for Research on Foundation Models (CRFM), Stanford University. (2025). *Holistic Evaluation of Language Models (HELM)*. Retrieved from https://crfm.stanford.edu/helm/
- Chhikara, P., Khant, D., Aryan, S., Singh, T., & Yadav, D. (28 Apr, 2025). *Mem0: Building Production-Ready AI Agents with Scalable Long-Term Memory*. Retrieved from arxiv: https://arxiv.org/abs/2504.19413v1
- CISA. (2025). Software Bill of Materials (SBOM). Retrieved from CISA: https://www.cisa.gov/sbom
- Cloud Security Alliance. (21 Aug, 2024). Best practices for event logging and threat detection. Retrieved from Cloud Security Alliance:

 https://cloudsecurityalliance.org/resources/best-practices-for-event-logging-and-threat-detection
- Cloud Security Alliance. (16 Jul, 2025). *Agentic AI Red Teaming Guide*. Retrieved from Cloud Security Alliance: https://cloudsecurityalliance.org/artifacts/agentic-ai-red-teaming-guide
- Cloudflare. (n.d.). What is mutual TLS (mTLS)? Retrieved from Cloudflare: https://www.cloudflare.com/learning/access-management/what-is-mutual-tls/
- CodeSignal. (2025). *Developing a Robust System Prompt*. Retrieved from CodeSignal: https://codesignal.com/learn/courses/building-a-chatbot-service-with-fastapi/lessons/crafting-a-robust-system-prompt-for-chatbot-interaction
- Conversation-AI. (n.d.). *Enabling online conversations*. Retrieved from Perspective: https://www.perspectiveapi.com/
- crewAl Inc. (n.d.). *Human-in-the-Loop (HITL) Workflows*. Retrieved from crewAl: https://docs.crewai.com/en/learn/human-in-the-loop
- Cure 53. (n.d.). DOMPurify. Retrieved from Github: https://github.com/cure 53/DOMPurify
- Cyber Security Agency of Singapore. (27 Jul, 2022). *Critical Information Infrastructure*Supply Chain Programme Paper. Retrieved from CSA:

 https://www.csa.gov.sg/resources/publications/critical-information-infrastructure-supply-chain-programme-paper
- Cyber Security Agency of Singapore. (15 Oct, 2024). *Guidelines and Companion Guide on Securing Al Systems*. Retrieved from CSA:

 https://www.csa.gov.sg/resources/publications/guidelines-and-companion-guide-on-securing-ai-systems

- Cyber Security Agency of Singapore. (5 Jun, 2025). *Responsible Vulnerability Disclosure Policy*. Retrieved from https://isomer-user-content.by.gov.sg/36/4aa60609-4481-4e7c-92eb-2728247a084f/responsible-vulnerability-disclosure-policy.pdf
- Cyber Security Agency of Singapore. (20 Jan, 2025). Supplementary references. Retrieved from CSA: https://www.csa.gov.sg/legislation/supplementary-references
- Debenedetti, E., Shumailov, I., Fan, T., Hayes, J., Carlini, N., Fabian, D., . . . Tramèr, F. (24 Jun, 2025). *Defeating Prompt Injections by Design*. Retrieved from arxiv: https://arxiv.org/abs/2503.18813
- Díaz, S., Kern, C., & Olive, K. (May, 2025). *Google's Approach for Secure Al Agents*.

 Retrieved from Google Research: https://research.google/pubs/an-introduction-to-googles-approach-for-secure-ai-agents/
- E2B. (26 Aug, 2025). E2B. Retrieved from GitHub: https://github.com/e2b-dev/E2B
- EU AI Act Holistic AI Team. (1 Aug, 2024). *High-Risk AI Systems Under the EU AI Act*. Retrieved from EU AI Act: https://www.euaiact.com/blog/high-risk-ai-systems-under-the-eu-ai-act
- Explosion. (n.d.). *Industrial-Strength Natural Language Processing*. Retrieved from spaCy: https://spacy.io/
- Feldman, E. (15 Apr, 2025). *Implementing effective guardrails for AI agents*. Retrieved from The Source Gitlab: https://about.gitlab.com/the-source/ai/implementing-effective-guardrails-for-ai-agents/
- Flinders, M., Smalley, I., & Schneider, J. (30 Apr, 2025). *AI fraud detection in banking*. Retrieved from IBM: https://www.ibm.com/think/topics/ai-fraud-detection-in-banking
- Fortinet. (2025). What Is A Message Authentication Code? Retrieved from Fortinet: https://www.fortinet.com/resources/cyberglossary/message-authentication-code
- Gabarda, F. C. (1 Jul, 2025). Model Context Protocol (MCP): Understanding security risks and controls. Retrieved from Red Hat Blog: https://www.redhat.com/en/blog/model-context-protocol-mcp-understanding-security-risks-and-controls
- GitHub. (28 Nov, 2022). *Rate limits for the REST API*. Retrieved from GitHub Docs: https://docs.github.com/en/rest/using-the-rest-api/rate-limits-for-the-rest-api?apiVersion=2022-11-28
- GitHub. (n.d.). Dependabot quickstart guide. Retrieved from GitHub Docs: https://docs.github.com/en/code-security/getting-started/dependabot-quickstart-guide
- GitLab. (n.d.). Dependency Scanning. Retrieved from GitLab Docs: https://docs.gitlab.com/user/application_security/dependency_scanning/

- GitLab. (n.d.). What is version control? Retrieved from GitLab: https://about.gitlab.com/topics/version-control/
- Gittlen, S. (2 May, 2024). *The ultimate guide to SBOMs*. Retrieved from GitLab: https://about.gitlab.com/blog/the-ultimate-guide-to-sboms/
- Google. (n.d.). *About IAM authentication*. Retrieved from Google Cloud: https://cloud.google.com/memorystore/docs/valkey/about-iam-auth
- Google. (n.d.). *Cutom Search JSON API*. Retrieved from https://developers.google.com/custom-search/v1/overview
- Google LLC. (9 Apr, 2025). A2A and MCP: Complementary Protocols for Agentic Systems.

 Retrieved from Agent2Agent (A2A) Protocol:

 https://a2aproject.github.io/A2A/latest/topics/a2a-and-mcp/#how-a2a-and-mcp-complement-each-other
- Google LLC. (9 Apr, 2025). What is A2A? Retrieved from Agent2Agent (A2A) Protocol: https://a2aproject.github.io/A2A/latest/topics/what-is-a2a/
- Google. (n.d.). Secret Manager overview. Retrieved from Google Cloud: https://cloud.google.com/secret-manager/docs/overview
- GovTech Singapore (Al Practice). (Jul, 2025). *Agentic Risk & Capability Framework*.

 Retrieved from https://govtech-responsibleai.github.io/agentic-risk-capability-framework/
- Guardrails AI. (n.d.). *Guardrails AI*. Retrieved from Github: https://github.com/guardrails-ai/guardrails
- Harang, R., & Sablotny, M. (25 Feb, 2025). *Agentic Autonomy Levels and Security*. Retrieved from NVIDIA DEVELOPER: https://developer.nvidia.com/blog/agentic-autonomy-levels-and-security/
- HashiCorp. (n.d.). Vault. Retrieved from GitHub: https://github.com/hashicorp/vault
- Helicone Inc. (n.d.). *Helicone*. Retrieved from GitHub: https://github.com/Helicone/helicone
- Hou, X., Zhao, Y., Wang, S., & Wang, H. (Apr, 2025). *Model Context Protocol (MCP): Landscape, Security Threats, and Future Research Directions*. Retrieved from https://arxiv.org/pdf/2503.23278
- Huang, K. (22 Dec, 2024). *7 Layered Agentic AI Reference Architecture*. Retrieved from Medium: https://kenhuangus.medium.com/7-layered-agentic-ai-reference-architecture-20276f83b7ee
- Huang, K. (02 Jun, 2025). Agentic AI Threat Modeling Framework: MAESTRO. Retrieved from Cloud Security Alliance: https://cloudsecurityalliance.org/blog/2025/02/06/agentic-ai-threat-modeling-framework-maestro

- Huang, K. (30 Apr, 2025). Threat Modeling Google's A2A Protocol with the MAESTRO Framework. Retrieved from Cloud Security Alliance:

 https://cloudsecurityalliance.org/blog/2025/04/30/threat-modeling-google-s-a2a-protocol-with-the-maestro-framework
- Huang, K., Narajala, V. S., Yeoh, J., Ross, J., Raskar, R., Harkati, Y., . . . Hughes, C. (28 May, 2025). A Novel Zero-Trust Identity Framework for Agentic AI: Decentralized Authentication and Fine-Grained Access Control. Retrieved from arxiv: https://arxiv.org/abs/2505.19301
- Hugging Face. (n.d.). *Daily Papers: Instruction Following Score*. Retrieved from https://huggingface.co/papers?q=Instruction%20Following%20Score%20(IFS)
- Hugging Face. (n.d.). *Model Cards*. Retrieved from Hugging Face: https://huggingface.co/docs/hub/en/model-cards
- Hugging Face. (n.d.). *Pickle Scanning*. Retrieved from Hugging Face: https://huggingface.co/docs/hub/security-pickle
- IETF OAuth Working Group. (n.d.). *OAuth Scopes*. Retrieved from OAuth 2.0: https://oauth.net/2/scope/
- Invariant. (1 Apr, 2025). MCP Security Notification: Tool Poisoning Attacks. Retrieved from Invariantlabs: https://invariantlabs.ai/blog/mcp-security-notification-tool-poisoning-attacks
- Jambrecic, R. (7 Jan, 2025). *Tools Dependency Injection*. Retrieved from AG2: https://docs.ag2.ai/latest/docs/blog/2025/01/07/Tools-Dependency-Injection/
- Jarvis, C. (19 Dec, 2023). *How to implement LLM guardrails*. Retrieved from OpenAl Cookbook: https://cookbook.openai.com/examples/how_to_use_guardrails
- Jin, X., Guo, Z., Zhang, P., Lu, S., Dai, W., Nujibieke, . . . Li, G. (2 Feb, 2025). *Bridging Minds and Machines: Agents with Human-in-the-Loop Frontier Research, Real-World Impact, and Tomorrow's Possibilities*. Retrieved from Camel-AI: https://www.camel-ai.org/blogs/human-in-the-loop-ai-camel-integration
- Kartha, V. (3 May, 2024). Self-Reflecting AI Agents Using LangChain. Retrieved from Medium: https://vijaykumarkartha.medium.com/self-reflecting-ai-agents-using-langchain-d3a93684da92
- Kumar, A., Roh, J., Naseh, A., Karpinska, M., Iyyer, M., Houmansadr, A., & Bagdasarian, E. (5 Feb, 2025). *OverThink: Slowdown Attacks on Reasoning LLMs*. Retrieved from arxiv: https://arxiv.org/abs/2502.02542
- LangChain. (2025). *How to pass run time values to tools*. Retrieved from LangChain: https://python.langchain.com/docs/how_to/tool_runtime/
- LangChain. (2025). *LangMem*. Retrieved from LangGraph: https://langchain-ai.github.io/langmem/

- LangChain. (n.d.). *E2B Data Analysis*. Retrieved from LangChain: https://python.langchain.com/docs/integrations/tools/e2b_data_analysis/
- LangChain. (n.d.). LangGraph interrupt: Making it easier to build human-in-the-loop agents with interrupt. Retrieved from LangChain: https://blog.langchain.com/making-it-easier-to-build-human-in-the-loop-agents-with-interrupt/
- Langfuse. (n.d.). *Open Source LLM Engineering Platform*. Retrieved from Langfuse: https://langfuse.com/
- LangSmith. (n.d.). *Ship agents with confidence*. Retrieved from LangSmith: https://www.langchain.com/langsmith
- Liu, X., Yu, H., Zhang, H., Xu, Y., Lei, X., Lai, H., . . . Tang, J. (25 Oct, 2023). *AgentBench: Evaluating LLMs as Agents*. Retrieved from arxiv: https://arxiv.org/abs/2308.03688
- Lucas, J. (16 Dec, 2024). Sandboxing Agentic AI Workflows with WebAssembly. Retrieved from NVIDIA Developer: https://developer.nvidia.com/blog/sandboxing-agentic-ai-workflows-with-webassembly/
- Meadows, J., & Chang, A. (27 Mar, 2024). How to choose a known, trusted supplier for open source software. Retrieved from Google Cloud:

 https://cloud.google.com/blog/products/identity-security/how-to-choose-a-known-trusted-supplier-for-open-source-software
- Meta Llama. (n.d.). *Purple Llama*. Retrieved from Github: https://github.com/meta-llama/PurpleLlama
- Microsoft Al Red Team. (2024). PyRIT. Retrieved from https://azure.github.io/PyRIT/
- Microsoft Azure. (5 Jul, 2024). What is an IP based access control list (ACL)? Retrieved from Microsoft Learn: https://learn.microsoft.com/en-us/azure/virtual-network/ip-based-access-control-list-overview
- Microsoft. (n.d.). *Presidio: Data Protection and De-identification SDK*. Retrieved from Microsoft Presidio: https://microsoft.github.io/presidio/
- Mitchell, M., Wu, S., Zaldivar, A., Barnes, P., Vasserman, L., Hutchinson, B., . . . Gebru, T. (14 Jan, 2019). *Model Cards for Model Reporting*. Retrieved from arxiv: https://arxiv.org/abs/1810.03993
- MITRE. (n.d.). *ATLAS Matrix*. Retrieved from MITRE ATLAS: https://atlas.mitre.org/matrices/ATLAS
- MITRE. (n.d.). *Supply Chain Security Framework*. Retrieved from MITRE System of Trust: https://sot.mitre.org/framework/system_of_trust.html
- Mu, N., Lu, J., Lavery, M., & Wagner, D. (15 Feb, 2025). *A Closer Look at System Prompt Robustness*. Retrieved from https://arxiv.org/abs/2502.12197

- Murúa, T. (1 May, 2025). *RAG and the value of grounding*. Retrieved from elastic search labs: https://www.elastic.co/search-labs/blog/grounding-rag
- National Security Agency. (5 Mar, 2024). *Advancing Zero Trust Maturity Throughout the Network and Environment Pillar*. Retrieved from NSA:

 https://media.defense.gov/2024/Mar/05/2003405462/-1/-1/0/CSI-ZERO-TRUST-NETWORK-ENVIRONMENT-PILLAR.PDF
- Nelson, A., Rekhi, S., Souppaya, M., & Scarfone, K. (n.d.). Special Publication 800-61r3
 Incident Response Recommendations and Considerations for CybersecurityRisk
 Management. Retrieved from NIST:
 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-61r3.pdf
- NIST. (14 Jan, 2025). *Cryptographic Standards and Guidelines*. Retrieved from NIST: https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines
- NVIDIA. (2025). *About NeMo Guardrails*. Retrieved from NVIDIA: https://docs.nvidia.com/nemo/guardrails/latest/index.html#
- NVIDIA. (n.d.). *garak, LLM vulnerability scanner*. Retrieved from Github: https://github.com/NVIDIA/garak
- OpenAI. (2025). *Guardrails*. Retrieved from OpenAI Agents SDK: https://openai.github.io/openai-agents-python/guardrails/
- OpenAI. (n.d.). *Moderation*. Retrieved from https://platform.openai.com/docs/guides/moderation
- OpenJS Foundation. (n.d.). ESLint. Retrieved from GitHub: https://github.com/eslint/eslint
- OWASP. (22 Apr, 2025). OWASP Gen AI Security Project Multi-Agentic system Threat Modelling Guide. Retrieved from https://genai.owasp.org/resource/multi-agentic-system-threat-modeling-guide-v1-0/
- OWASP. (28 Jun, 2025). OWASP Gen Al Security Project Securing Agentic Applications Guide. Retrieved from https://genai.owasp.org/resource/securing-agentic-applications-guide-1-0/
- OWASP. (17 Feb, 2025). OWASP Top 10 for LLMs Agentic AI Threats and Mitigations.

 Retrieved from https://genai.owasp.org/resource/agentic-ai-threats-and-mitigations/
- OWASP. (23 Jan, 2025). OWASP Top 10 for LLMs GenAl Red Teaming Guide. Retrieved from https://genai.owasp.org/resource/genai-red-teaming-guide/
- OWASP. (n.d.). *Authentication Cheat Sheet*. Retrieved from OWASP Cheat Sheet Series: https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.htm
- OWASP. (n.d.). *Authorization Cheat Sheet*. Retrieved from OWASP Cheat Sheet Series: https://cheatsheetseries.owasp.org/cheatsheets/Authorization_Cheat_Sheet.html

- OWASP. (n.d.). Content Security Policy Cheat Sheet. Retrieved from OWASP Cheat Sheet Series:

 https://cheatsheetseries.owasp.org/cheatsheets/Content_Security_Policy_Cheat_Sheet.html
- OWASP. (n.d.). Docker Security Cheat Sheet. Retrieved from OWASP Cheat Sheet Series: https://cheatsheetseries.owasp.org/cheatsheets/Docker_Security_Cheat_Sheet.ht ml
- OWASP. (n.d.). *File Upload Cheat Sheet*. Retrieved from OWASP Cheat Sheet Series: https://cheatsheetseries.owasp.org/cheatsheets/File_Upload_Cheat_Sheet.html
- OWASP. (n.d.). Input Validation Cheat Sheet. Retrieved from OWASP Cheat Sheet Series: https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.ht ml
- OWASP. (n.d.). LLM Prompt Injection Prevention Cheat Sheet. Retrieved from OWASP
 Cheat Sheet Series:
 https://cheatsheetseries.owasp.org/cheatsheets/LLM_Prompt_Injection_Prevention_Cheat_Sheet.html
- OWASP. (n.d.). Secrets Management Cheat Sheet. Retrieved from OWASP Cheat Sheet Series:

 https://cheatsheetseries.owasp.org/cheatsheets/Secrets_Management_Cheat_Sheet.html
- OWASP. (n.d.). XSS Filter Evasion Cheat Sheet. Retrieved from OWASP Cheat Sheet Series: https://cheatsheetseries.owasp.org/cheatsheets/XSS_Filter_Evasion_Cheat_Sheet .html
- PagerDuty. (n.d.). *Incident Response*. Retrieved from PagerDuty: https://response.pagerduty.com/
- Perrone, P. (15 Apr, 2025). MCP Is a Security Nightmare Here's How the Agent Security Framework Fixes It. Retrieved from Medium: https://medium.com/data-science-collective/mcp-is-a-security-nightmare-heres-how-the-agent-security-framework-fixes-it-fd419fdfaf4e
- Perrot, C., Tanke, M. L., Roy, M., & Sachs, R. (9 Apr, 2025). *Implement human-in-the-loop confirmation with Amazon Bedrock Agents*. Retrieved from AWS: https://aws.amazon.com/blogs/machine-learning/implement-human-in-the-loop-confirmation-with-amazon-bedrock-agents/
- Personal Data Protection Commission Singapore. (1 Mar, 2024). *Advisory Guidelines on use of Personal Data in AI Recommendation and Decision Systems*. Retrieved from PDPC: https://www.pdpc.gov.sg/guidelines-and-consultation/2024/02/advisory-guidelines-on-use-of-personal-data-in-ai-recommendation-and-decision-systems

- Personal Data Protection Commission Singapore. (24 Jul, 2024). *Guide to Basic Anonymisation*. Retrieved from PDPC: https://www.pdpc.gov.sg/-/media/files/pdpc/pdf-files/advisory-guidelines/guide-to-basic-anonymisation-(updated-24-july-2024).pdf
- Personal Data Protection Commission Singapore. (14 Dec, 2024). *Guide to Data Protection Practices for ICT Systems*. Retrieved from PDPC: https://www.pdpc.gov.sg/-/media/files/pdpc/pdf-files/other-guides/tech-omnibus/guide-to-data-protection-practices-for-ict-systems.pdf
- Promptfoo. (n.d.). *Promptfoo: LLM evals & red teaming*. Retrieved from Github: https://github.com/promptfoo/promptfoo
- Python Code Quality Authority. (n.d.). *Bandit*. Retrieved from https://bandit.readthedocs.io/en/latest/
- Rasmussen, P., Paliychuk, P., Beauvais, T., Ryan, J., & Chalef, D. (20 Jan, 2025). *Zep: A Temporal Knowledge Graph Architecture for Agent Memory*. Retrieved from arxiv: https://arxiv.org/abs/2501.13956
- Rehberger, J. (2 May, 2025). MCP: Untrusted Servers and Confused Clients, Plus a Sneaky
 Exploit. Retrieved from Embrace The Red:
 https://embracethered.com/blog/posts/2025/model-context-protocol-security-risks-and-exploits/
- Rehberger, J. (n.d.). *Trust No AI: Prompt Injection Along The CIA Security Triad*. Retrieved from https://arxiv.org/pdf/2412.06090
- Rose, S., Borchert, O., Mitchell, S., & Connelly, S. (Aug, 2020). Special Publication 800-207 Zero Trust Architecture. Retrieved from NIST:

 https://nvlpubs.nist.gov/nistpubs/specialpublications/NIST.SP.800-207.pdf
- Sapkota, R., Roumeliotis, K. I., & Karkee, M. (28 May, 2025). *Al Agents vs. Agentic Al: A Conceptual Taxonomy, Applications and Challenges*. Retrieved from arxiv: https://arxiv.org/abs/2505.10468
- Scarfone, K., Souppaya, M., Cody, A., & Orebaugh, A. (n.d.). Special Publication 800-115

 Technical Guide to Information Security Testing and Assessment. Retrieved from NIST: https://csrc.nist.gov/pubs/sp/800/115/final
- Semgrep, Inc. (n.d.). Semgrep. Retrieved from GitHub: https://github.com/semgrep/semgrep
- Shah, D. (4 Jun, 2025). *Introduction to Training Data Poisoning: A Beginner's Guide*. Retrieved from Lakera: https://www.lakera.ai/blog/training-data-poisoning
- Snyk. (Jun, 2025). *Snyk Open Source*. Retrieved from Snyk User Docs: https://docs.snyk.io/scan-with-snyk/snyk-open-source

- Souppaya, M., Scarfone, K., & Dodson, D. (Feb, 2022). Special Publication 800-218 Secure Software Development Framework (SSDF) Version 1.1. Retrieved from NIST: https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-218.pdf
- Stryker, C. (2025). What is agentic AI? Retrieved from IBM: https://www.ibm.com/think/topics/agentic-ai
- Surapaneni, R., Jha, M., Vakoc, M., & Segal, T. (9 Apr, 2025). *Announcing the Agent2Agent Protocol (A2A)*. Retrieved from Google for Developers:

 https://developers.googleblog.com/en/a2a-a-new-era-of-agent-interoperability/
- The Linux Foundation. (n.d.). Supply-chain Levels for Software Artifacts. Retrieved from SLSA: https://slsa.dev/
- The OWASP Foundation. (July, 2017). *OWASP Code Review Guide*. Retrieved from OWASP: https://owasp.org/www-project-code-review-guide/
- The Vulnerable MCP Project. (2025). *The Vulnerable MCP Project*. Retrieved from https://vulnerablemcp.info/
- tl;dr sec. (Feb, 2025). *prompt-injection-defenses*. Retrieved from GitHub: https://github.com/tldrsec/prompt-injection-defenses
- traceloop. (n.d.). *OpenLLMetry*. Retrieved from GitHub: https://github.com/traceloop/openllmetry
- UK AI Secuity Institute, Arcadia Impact, Vector Institute. (n.d.). *Inspect Evals*. Retrieved from https://ukgovernmentbeis.github.io/inspect_evals/
- UK National Cyber Security Centre. (12 Oct, 2023). Supply Chain Guidance. Retrieved from NCSC: https://www.ncsc.gov.uk/collection/supply-chain/guidance
- UK National Cyber Security Centre. (7 Nov, 2024). *Vulnerability Disclosure Toolkit*. Retrieved from NCSC: https://www.ncsc.gov.uk/information/vulnerability-disclosure-toolkit
- Ul Muram, F., Tran, H., & Zdun, U. (1 Apr, 2017). Systematic Review of Software Behavioral Model Consistency Checking. Retrieved from https://www.researchgate.net/publication/316938485_Systematic_Review_of_Soft ware_Behavioral_Model_Consistency_Checking
- University of the Sunshine Coast Australia. (n.d.). What are credible sources? Retrieved from https://libguides.usc.edu.au/credible/web
- Wang, C. L., Singhal, T., Kelkar, A., & Tuo, J. (8 Aug, 2025). MI9 Agent Intelligence Protocol: Runtime Governance for Agentic AI Systems. Retrieved from arxiv: https://arxiv.org/abs/2508.03858
- Wickramasinghe, S. (18 Mar, 2025). *IT & System Availability + High Availability: The Ultimate Guide*. Retrieved from Splunk Blogs: https://www.splunk.com/en_us/blog/learn/availability.html

- Xu, F. F., Song, Y., Li, B., Tang, Y., Jain, K., Bao, M., . . . Neubig, G. (19 May, 2025).

 The Agent Company: Benchmarking LLM Agents on Consequential Real World Tasks.

 Retrieved from https://the-agent-company.com/
- Yuan, Y., Jiao, W., Wang, W., Huang, J.-t., Xu, J., Liang, T., . . . Tu, Z. (23 May, 2025). Refuse Whenever You Feel Unsafe: Improving Safety in LLMs via Decoupled Refusal Training. Retrieved from https://arxiv.org/abs/2407.09121
- Zaharia, M. A., Chen, A., Davidson, A., Ghodsi, A., Hong, S. A., Konwinski, A., . . . Zumar, C. (2018). *Accelerating the Machine Learning Lifecycle with MLflow*. Retrieved from GitHub: https://github.com/mlflow/mlflow
- Zhou, S., Xu, F. F., Zhu, H., Zhou, X., Lo, R., Sridhar, A., . . . Neubig, G. (16 Apr, 2024).

 WebArena: A Realistic Web Environment for Building Autonomous Agents. Retrieved from https://webarena.dev/